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Abstract— The last two decades has seen a rapid increase in the 
application of AIS (Artificial Immune Systems) modeled after the 
human immune system to a wide range of areas including 
network intrusion detection, job shop scheduling, classification, 
pattern recognition, and robot control. JPL (Jet Propulsion 
Laboratory) has developed an integrated pattern 
recognition/classification system called AISLE (Artificial 
Immune System for Learning and Exploration) based on 
biologically inspired models of B-cell dynamics in the immune 
system. When used for unsupervised or supervised classification, 
the method scales linearly with the number of dimensions, has 
performance that is relatively independent of the total size of the 
dataset, and has been shown to perform as well as traditional 
clustering methods. When used for pattern recognition, the 
method efficiently isolates the appropriate matches in the data 
set. The paper presents the underlying structure of AISLE and 
the results from a number of experimental studies. 
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I.  INTRODUCTION 
Artificial Immune Systems (AIS) are loosely modeled after 

the human immune system. Without going too deeply into the 
details, the human immune system basically consists of a 
collection of lymphocyte cells that are produced in the thymus 
(T-cells) and in the bone marrow (B-cells). The functions of the 
T-cells include the regulation of other cells’ actions and direct 
attacks on the host infected cells. The main functions of the B-
cells include the production and secretion of antibodies as a 
response to antigens such as bacteria, viruses and tumor cells. 
Bindings between the antibody and the antigen occur at 
epitopic sites on the surface of the antigen where there are 
“shape” matches. The physical shape and chemical affinity of 
each antibody makes it specific to a very narrow range of 
antigens, so they act as efficient pattern recognition engines. 

The dynamics of the immune system reaction to an antigen 
intrusion lends itself well to AIS methods for a wide range of 
applications including network intrusion detection [1], job shop 
scheduling [2], pattern recognition [3, 4, 5], and robot control 
[6, 7]. There have also been a number of studies into use of 
AIS for image classification [8, 9, 10, 11]. These types of 

problems are characterized 
by a large set of data 
elements (size of images) 
that the system must be 
able to handle in an 
efficient manner. A 
commonly used short cut 
is to map the image data 
elements into a binary 
representation that leads to 
fast comparisons between 
data elements and the 
existing lymphopathic 
cells in the system. A 
recent comprehensive 
bibliography can be found 
in [12], and there are also 
many surveys of the field 
[13,	  14,	  15,	  16,	  17].  

AIS approaches can be generally broken into two classes: 
population based and network based. The population-based 
algorithms rely on the dynamics of populations of individual 
immune-like cells. Examples of population-based systems 
include self/non-self [18, 19], immune libraries [20], clonal 
selection [21, 22], and hybrids [23]. The network based-
algorithms are derived from the Immune Network Theory of 
Jerne [24], and rely on the interactions between networks of 
immune-like cells. Examples of network-based systems include 
case-base reasoning system for classification [25], anomaly 
detection [26], unsupervised learning [27, 28, 29], and 
continuous learning [30]. 

JPL has developed an integrated learning/pattern 
recognition/classification system called AISLE (Artificial 
Immune System for Learning and Exploration) based on 
models of B-cell dynamics found in human immune systems. It 
is a hybrid of a population-based and a network-based system, 
where the network interactions are modeled through cross-
linking between B-cell populations, and clonal selection is 
accomplished by solving a differential equation of the B-cell 
population dynamics. 

The next section discusses the B-cells dynamics model and 
gives some examples of its behavior when “exposed” to multi-This work was carried out at the Jet Propulsion Laboratory, California 
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Figure 1. Illustration of shape space 
where any antibody shape only 
matches epitopes within a volume V 
[31].  





behavior is in some sense equivalent to the training phase of a 
traditional learning system. 

The AISLE system algorithm is shown in Figure 2. For 
unsupervised learning, a variable number of B-cell populations 
are randomly initialized and each input pattern is presented to 
the system. Equation (1) is used to process each data element, 
with a Memory Cell population being maintained based on the 
surviving populations after each data presentation. As each 
generation of B-cells is modified based on (1), cell death very 
quickly leads to a decreased number of interactions. The final 
surviving B-cell is put into the Memory Cell population to be 
included in the next exposure of the system. 

III. EXPERIMENTAL STUDIES 
A series of three experiments were run in order to test the 

learning and pattern recognition capabilities of AISLE. The 
first study uses the Fisher Iris dataset, the second study uses 
information derived from the Hipparcos star catalog, and the 
third study uses 18 dimensional spectral data acquired by the 
MODIS satellite. In all experiments, bi , the number of cells of 
clone i, was initially set to 100 for all i, the influx rate s was set 
to 0.0001, the maximal growth rate p was set to 8, the growth 
clone-size threshold θ was set to 75, the activation w was set to 
0.1, weight σ in the affinity function (5) was set to 5.0, the 
exponent η in the cross-linking term (4) was set to 1.0, and the 
death rate d was set to 1. All updates of (1) were done using a 
Euler rule with a time step of 1.0, the death decision for any 
population i was set to 50.0, and a maximal number of 
generations for each B-cell clone set to 5000. 

A. First Study 
The first study used one of the most studied classification 

testbeds, the Fisher Iris dataset [38], a collection of 150 flower 
samples with the four variables of sepal length, sepal width, 
petal length, and petal width. The dataset has been broken into 
the three classes Setosa, Versicolor, and Virginica based on 
visual analysis of the samples. The three classes are not linearly 
separable, with mixing between Versicolor and Virginica. This 
study was used to demonstrate the unsupervised learning 
capabilities of AISLE using a single exposure of 75 randomly 
selected members of the dataset to the system. The Memory 
Cell population in the worst case would have 75 elements 
corresponding to an element for each member of the data 
subset. There were 50 trials performed using different starting 
subsets. Memory Cell population members were labeled with 
the class of the input sample that triggered the B-cell 
population in order to determine the classification accuracy of 
the system. The final Memory Cell population had 11 members 
after the single exposure of the data subset to AISLE. 

The full dataset was presented to AISLE in recall mode 
using only the Memory Cell population to determine how well 
the system learned. The overall classification accuracy was 
94.67%, with a 100% identification of Setosa, eight miss-
classified Versicolor as Virginica, and one misclassified 
Virginica as Versicolor. This classification performance is 
equivalent to that of a backpropagation network with one 
hidden layer of 19 nodes or the SVM algorithm, and only 
slightly less than the 96% accuracy obtained by a recursive 

partitioning algorithm [39]. AISLE achieves this level of 
classification performance with an order of magnitude better 
than that of the backpropagation network in terms of 
computational cycles. A plot of the AISLE results is shown in 
Figure 3. The plot shows petal length versus sepal length, and 
the clear delineation of Setosa is evident. Members of the 
Memory Cell population are also shown on the plot, and the 
source of the misidentification of Versicolor and Virginica lies 
in the Memory Cell (shown with arrow) within the boundary 
zone between the two classes. Also shown are members of the 
somatic hypermutated population that did not persist through 
the initial presentation of the dataset due to low final 
populations. 

B. Second Study 
The second study uses data from a subset of the Hipparcos 

star catalog. This catalog contains 118,218 stars that were 
observed by the European Space Agency's Hipparcos Satellite, 
operational from late 1989 to 1993. The Hipparcos catalog data 
is purely based on observations performed in space, except for 
the global orientation of its reference frame that was adjusted to 
the existing system by a variety of mainly ground-based 
techniques. By international agreement the catalog is the 
standard reference for optical astrometry. The subset of the 
catalog used for this study contained 2854 stars all with an 
apparent brightness magnitude cutoff of 5.5 found within 33 
parsecs of Earth. This type of dataset would be used for star 
catalogs onboard a satellite to determine overall attitude within 
a global reference frame based on observed stars. An example 
of sample images taken at two instants in time is shown in 
Figure 4 for a simulated yaw maneuver of 1.41 degrees. The 
sizes of the stars indicate relative magnitudes. 

Figure 3. Experimental results from the exposure of the Fisher Iris 
dataset to AISLE in a single unsupervised pass. The B-cell populations 
that survived each exposure were put into a Memory Cell population. 

There were 11 Memory Cells left after the exposure of the full dataset. 
These are shown as the magenta diamonds (Setosa), yellow triangles 

(Versicolor), and red circles (Virginica). 



Usually, only the star 
magnitudes are used as 
an index into the catalog 
to determine position.  
The relative positions of 
the stars are as important 
for matching, since the 
catalog has a large 
number of members and 
there will be a lot of 
mismatches if based on 
apparent magnitude 
alone. Characterizing the 
relative positions of the 
stars has to be done in 
such a way that is 
rotationally invariant, 
because the satellite can be in any orientation. For this reason, a 
composite vector was automatically built with sets of star 
triangles generated from the catalog using a Delaunay 
decomposition [40] of the data. An example of the Delaunay 
decomposition is shown in Figure 5, where 13 triangles capture 
the entire content of the image. The rotationally invariant 
representation is built using six variables derived from the 
triangles: the three first order shape moments [41] and the three 
star magnitudes on the corners of each triangle.  

The first image in the sequence is fed into AISLE using a 
master Memory Cell population built from vectors derived 
from the Hipparcos catalog. The subset of matched vectors are 
then used as a new Memory Cell population for analysis of the 
next image. The number of surviving populations gives an 
indication of the degree of match, and any other triangle 
magnitude/moment vectors that are generated (epitopes) are the 
new stars that have entered the field of view of the satellite 
sensor due to the rotation. Figure 6 shows a plot of the final 
populations and the number of generations (iterations) for each 
of the triangle magnitude/moment vectors. The recognized 
vectors are characterized by relatively rapid convergence with 
convergence in all cases in about 300 msec making the 
algorithm capable of running in real time on a conventional 
processor or spacecraft. The matched triangle 

magnitude/moment vectors are shown in Figure 7, where the 
newly found vectors are labeled as epitopes.  

C. Third Study 
The final study demonstrates the clustering performance of 

AISLE. Usually, the object of a cluster analysis of remotely 
sensed data is to determine the dominant “classes” in the 
dataset for identification of land/water types. The dataset used 
in the study is from a hyper-spectral (18 bands) MODIS 
satellite feed (shown in Figure 8) taken over the Marqueses 
Islands (140ºW, 10ºS) located in French Polynesia in the 
Pacific Ocean. There are heavy currents that tend to obscure 
the boundaries between land and sea areas (especially at the 
relatively coarse 36 km cell size resolution of the data). Each of 
the 64,000 18-dimensional vectors corresponding to a location 
in the images was fed into AISLE much the same way as the 
first study – any surviving B-cell population is added to the 
Memory Cell population and used for the exposure of the next 
data item. The final Memory Cell population had 14 members 
that would correspond to 14 traditional classes for an 
unsupervised clustering algorithm. The study zone and output 
of the system is shown in Figure 9, where color coding is used 
in the inset to indicate the classes. The Marqueses Islands and 
Tuamotu Archipelago (circled in red) have been clearly 
extracted (yellow-tan labeled cells). 

IV. SUMMARY AND CONCLUSIONS 
This paper has presented AISLE, a clonal B-cell population 

based AIS that demonstrated generalized learning and pattern 
recognition capabilities. The Memory Cell populations are 
automatically generated by AISLE during the presentation of 
patterns. AISLE scales well for higher dimensional data, and 
all of the experimental studies were done using an ordinary 
MacBook Pro laptop (2.66 GHz Intel Core i7 CPU, 4 GB 1067 
MHz RAM). The computational complexity of the system was 
kept under control using shape space culling of the initial large 
number of B-cell populations. The experimental studies 
demonstrated the unsupervised learning capabilities with a 
94.67% accuracy on recall for the Fisher Iris dataset after only 

Figure 4. Two frames from a simulated satellite star tracking system. 
The placement of stars is based on the Hipparcos catalog entries. A yaw 
manuever of 1.41 degrees is the position change from Image 1 on the left 

to Image 2 on the right. The relative sizes of  the circles are correlated 
with the apparent magnitude taken from the catalog  

Figure 5. Delaunay decomposition of 
Image 2 from Figure 5. There are 13 
triangles generated that serve as the 
basis for building a feature vector. 

Figure 6. Plot of the number of generations (iterations) of AISLE 
required for each of the triangles in Figure 6 using the Memory Cell 

populations derived from the first frame of the sequence. The 
populations are consistent with the correct matches.  



a single pass, pattern recognition capabilities on a star tracking 
dataset with matching of common features in a sequence, and 
clustering capabilities on an 18 dimensional feature vector. 

Current research directions include investigation of using 
GPU (Graphics Processing Units) on the laptop for better 
performance, developing a resolving strategy for degenerate 
matches (using other matches within the image), parallel 
processing, and developing an affinity based method for 
somatic hyper-mutations. Also underway are studies 
investigating the scalability of AISLE for larger hyperspectral 
datasets (256 bands) in an effort to determine what are the 
dominant bands that are useful for discrimination. 
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