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Device Modeling - Background

{

€ As a critical step in the Flight hardware design

process, the Worst Case Analysis (WCA) of electronic
hardware provides a quantitative assessment of
circuit performance, accounting for the
manufacturing tolerances as well as the mission-
specific environmental, aging, and radiation effects.

€ Essential for the WCA is the availability of accurate

SPICE models for electronic components used in the
circuits, which are usually of limited accuracy or not
available. Current solutions to these problems are
device modeling by specialists; or the use of extreme
conservative analysis such as EVAs. The former is
costly and time consuming; and the later usually
leads to over-design.




Motivations

¢

This works proposes the use of Artificial Neural Networks as an

_, alternative solution to device modeling;

Y

¢

Artificial Neural Networks (ANN) are computational models loosely
based in the nervous system, successfully used in applications such
as pattern recognition, series forecasting and others;

Can be used as an autonomous modeling tool for electronic
components that will produce and deliver accurate SPICE
(Simulation Program with Integrated Circuit Emphasis) models of
virtually any component at a variety of environmental conditions
from limited or incomplete test data;

ANNs are able to learn from measured/screening data from a
specific component lot and could generalize its response as it is
exposed to unseen patterns;

Deliver more accurate simulation models, which will also be tunable
to Mission environment;
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Artificial Neural Networks For Device
Modeling

@ ANNs can be trained to learn non-linear relationships from
corresponding device I/O data, even if they are incomplete:

= Measured data;
= Screening data;

= Worst Case Database (WCDB) specific for the particular Mission
environment.

€ This presentation demonstrates the use of ANNs for device
modeling:

= Generate a device SPICE model from scratch;
= Improve upon existing device SPICE models provided by manufacturers;

= Generate/Improve simulation models that accounts for Mission critical
variables not accurately modeled conventionally, mainly temperature,
initial device tolerance and radiation effects of Total Ionization Dose
(TID).
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Integration of ANN Models into SPICE

&

@

&

&

Instead of physical modeling , ANNs generate behavioral models for electronic

{741336535;_

The ANN derived models are defined as a set of non-linear equations and real-valued
coefficients or weights;

These mathematical models can be seamlessly to used to define the controlled
sources;

Typical ANN model for a diode as written in SPICE format:

.subckt

Gdiodel

E1 1 0 VALUE = {( (V(100,200) + 5)/10 )}
vz 2 0 0.

E21 21
E22 22
E23 23
E24 24
ES51 51
E52 52
E53 53
ES54 54
ES1 81
+(10.524

vi(23))))
E94 94 0

OO OO0 OoOoOo

(@)

.ends ann_diode

ann_diode 100 200

100 200 VALUE = {(V(95) )}

ov

.| » Can be exported into any

)

| SPICE simulator

function 0.757871 +(-10.335355 * V(
function -15.304038 +(27.702725 * V
function -20.766132 +(39.259432 * V
function -7.039589 +(14.522268 * V(
function 1/ (1 + exp(-V(21)))
function 1/ (1 + exp(-V(22)))
function 1/ (1 + exp( 3)))
function 1/ (1 + exp( )))
function -17.333016 + 673347 * (1/(1 + exp(-V(21)))))
507 * (1/(1 + exp(-V(22) )) +(21.503769 * (1/(1 + exp(-
) +(-11.787620 * (1/(1 + exp(-V(24)))))
function 1/(1 + exp(-V(81)))

+

)

)
+

-0.801717 * V(
(0.794741 * v (
(2.821530 * Vv (

2

2
2
2
1.009189 * v (2)

1)) +(
(1)) +
(1)) +
1)) +(

-v(2
-v(24

(-8.
))




Case Studies

€ A Multi-Layered Perceptron (MLP) using Backpropagation training
“+'method was used in all applications;

@ The training data was prepared by a combination of real device
measurements, datasheet information and calculations from Mission
specific Worst Case Database, which considers the exact
environmental conditions (temperature, radiation, duration) of a
particular project;

€ The following Flight devices were used as case studies:
s 3.9V 1IN6634 Zener;
= 2.5 Regulator 1S1009;
= Bipolar transistor 2N2222;
= Diode 1N6642;
= Analog devices OpAmp AD8138;
= Linear Technologies OpAmp LT1499;




Zener 1N6634 (1)

€ Discrepancy between Flight hardware behavior as measured in the
laboratory and simulated behavior;

/Zener 1N6634 below, which should be clamped to 3.9V when the
load is disabled, is only 3V for a load current of 30 mA;

Q/\\

€| Due to low zener voltage when the load interface is disabled, the
load is being powered to 9V.

+ At 9V some of the drivers chips are marginally on

»| The combined effect of these two issues results in erroneous state for the
load interface.

Control
Circuit

Power VDD = 12V
Converter




Zener 1N6634 (2): Measurements

€ From below it can be seen that the 3.9V zener has a really soft knee and
does not fully turn on until about 250mA.

p
U
4 At 30mA, the current through Z1 when the load interface is disabled, the
zener voltage is ~3V

1N6634

/
02 /
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/ e IN6634
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Current (mA)

Zener 1N6634: Simulation x Actual

Behavior
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ANN Model for 1N6634

@ 2 inputs: Input voltage and temperature;

@
4

4-neurons-in—the hidden layer;
1 output: Zener current;

Temp—

in

» Training data collected both from
previous measurements and by data
from Worst Case Database, the latter
being used to augment training set
and model the diode temperature
dependency.

» Total of 900,000 iterations,
approximately 10 minutes for ANN
convergence.
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1N6634: Training Result

» Average error below 1 %;,
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Simulation Comparison

Using SPICE
Model
Model
» ANN model correctly predicts a voltage of 9V for a load of ~ 30 mA;

»SPICE model predicts a voltage of 8V for
a load of ~ 30 mA: simulation fails for the circuit
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1S1009 2.5V Voltage Regulator (1)

i [opology: 3 x6 x 1
ANN trained using actual 514 measured data for this device for

different radiation levels (up to 1Mrad of TID) at different regulator
currents Iz (from 200 uA to 10 mA). An extra binary input was
also applied to the ANN, representing the state, powered or
unpowered, of the device during irradiation.

TID — > After training, the maximum

error between ANN output and
each training sample was 0.58 %o,
and the average error was 0.15 %.

I — Vpee
REG — >

Bias —
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1S1009 2.5V Voltage Regulator (2)
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Bipolar Transistor 2N2222 (1)

p
# Mgdel base-emitter junction voltage Vge o ; kol
C

ritical when bipolar transistor is used as a
switch: avoid unexpected transistor turn-on; Re

Power
Switches

Driver

€ Typical built-in simulation models produce a
variation between 0.8V and 1.0V with

temperature for Vg . , Whereas worst case
variations can range from 0.47V and 1.4V ;

* Used compact ANN 2 x 4 x 1 to model
this parameter;
 Two inputs, the input voltage applied at
the junction, Vgg; and the initial tolerance
Tol, which defines Worst Case Minimum, S

Nominal and Maximum values of Vg (.; N I I I R

1.00

ge (V)

200

4

-
-

-

-

» Produced ANN model, incorporated into | |
SPICE netlist, reproduces more accurately T

data from WCDB,; 00 o 10




Bipolar Transistor 2N2222 (2)

®Model-transistor gain 3, which is a function of the temperature, Total
lonization Dose and transistor current;

@ Three ANNs respectively generate Nominal, Minimum and Maximum

values for the gain in order to capture large tolerance of the transistor

gain;

@ | Used 3 x 6 x 1 topology:

= |nputs are Total lonization Dose (TID), transistor current (l) and
temperature (Temp); and the output is the transistor gain 3 .

€ Training data from actual radiation and temperature measurements
from 514:

» Data is further augmented into 3 sets (Minimum, Nominal and Maximum)
using the Worst Case Database as a basis for extrapolating the measured

data;
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Bipolar Transistor 2N2222: Results

300

250

, \
“ N \ \

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

» ANN able to map the training data relatively easily: the training time
was less than 5 minutes and the average error was 5.7 %;,

» Similar average error when testing ANN for data unseen during
training, i.e., training for 10 and 50°C,; testing for 30 °C;
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Slew-Rate

OpAmp LT1499

&

¢

_arate as defined per Mission Specific Worst Case Database;

Improve manufacturer provided model to characterize OpAmp slew-

ANN Topology 4 x 8 x 1:
= 4 inputs: temperature; radiation; end-of-life; and tolerance;

= 1 output neuron: internal current source parameter used to calibrate
the slew rate.

12

10

» Average training error of 2.5%;
. A 1| » Produced hybrid behavioral

/ \ /\ /\ / \ / gﬁl]gfphysicaz (manufacturer)

ANN » Each sample encompasses a
different combination of

// vV~ Target \/ V'V temperature; radiation; end-of-life;

and tolerance;

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Sample
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OpAmp LT1499: ANN Training
Results

12
«» 10
=
> 8
2 6 ANN
& Target
z 4
9
n 2
O | I I
30 80 130 180
Bias Current (UA)

€ OpAmp slew-rate can be adjusted by changing OpAmp Bias
current in the manufacturer provided model;

€ ANN follows closely target output defined by Mission Worst Case
Database;




OpAmp LT1499 SPICE Model

Manufacturer Model (available in
LT webpage)

ANN Behavioral (Not complete
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Convergence Issues

N

L

# Neural Networks could easily be trained to capture the transfer
function of the devices:
= However SPICE would present convergence problems for large networks;

» Need to keep right balance: very compact ANN may fail to map
device curves; very large ANNs may produce convergence
problems;

@ Other strategies to avoid convergence problems: re-group ANN
equations, ramping up Vpp, increasing number of iterations, etc
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Conclusions & Future Work

€ The ANN tool produced a more accurate model of many devices;
<V

€ Demonstrated integration of ANN models into SPICE netlist for
actual flight circuits;

€ SPICE models include “knobs” to adjust for:

= [emperature;

= Radiation (TID);

» Initial tolerance;

= End-of-life effects;

€ How to make ANN models readily available to designers ?

® How to integrate ANN SPICE modeling into WCA process ?
~ Keeping and maintaining models database across Missions;

~ Two complementary methods: simulations to validate equations.

® Other solutions:

» Automatic features of simulation tools (e.qg., Silvaco, PSPICE) ? Understand too/
limitations, availability;
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