In-Flight Tuning of the Cassini RCS Attitude Controller

August 10, 2011

Todd S. Brown

Jet Propulsion Laboratory, California Institute of Technology

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.
Overview

• The Cassini Spacecraft
• RCS Controller
• Dynamics Simulation in FSDS
• Testing Parameter Changes
• Summary of In-Flight Tuning
• Conclusions
The Cassini Spacecraft

- Launched in 1997
- Arrived at Saturn in 2004
- 2nd Extended Mission scheduled to last until 2017
- 12 major science instruments
- Must slew to point science instruments
- 3-Axis stabilized and two sources of attitude control: RCS thrusters and reaction wheels

Credits: NASA, JPL
The Cassini Spacecraft

- **RCS Thrusters**
 - Two fully redundant thruster branches (A & B)
 - Y1-Y4 have Z-axis control authority
 - Z1-Z4 have X & Y axis control authority

- Degradation in multiple A-Branch Z-facing thrusters led to swap to backup hardware

- To preserve health of B-branch thrusters and to conserve hydrazine, several attitude control logic (ACL) parameters are examined for in-flight tuning

Credits: NASA, JPL
RCS Controller

- Two RCS control modes on Cassini: High-Rate mode and Low-Rate mode

- High-Rate Mode
 - Standard bang-bang controller
 - Used for slews, orbit trim maneuvers, RWA momentum biases, and for strong external torques (i.e. Titan’s atmosphere and Enceladus’ ice plume)
 - Uses only 0.125 sec thruster pulses (or multiples of 125 ms)
 - Control deadband typically 2 mrad (0.11 deg) for X & Y axes and 2-20 mrad for the Z-axis
RCS Controller

- Low-Rate Mode
 - Used while Cassini is quiescent for long periods
 - Adaptive Pulse Width Logic used to fine-tune pulse duration based on position error behavior
 - Controller attempts to achieve one-sided limit cycling
- Thruster pulse duration varies autonomously between 7 ms and 125 ms
Purpose

• Examine whether ACL parameter changes improve controller performance
 – Improvement metrics: thruster on-time, thruster on/off cycles, and hydrazine consumption

• RCS parameters examined in this investigation
 – High-Rate to Low-Rate Persistence Timer
 – “Factor Next Limit Cycle”
 – Minimum RCS Pulse Width
 – Additional parameters are discussed in the paper:
 • Walking Deadband Number of Steps Allowed
 • Walking Deadband Step-Size
 • X & Y axis deadband limits
Testing Parameter Changes

- Parameter changes tested on the ground using FSDS
 - FSDS is the Flight Software Development System
 - Runs full attitude control flight software and simulates spacecraft environment in high fidelity
 - FSDS simulation ~10x faster than real-time. Tuning FSDS required ~120 days of simulation time.
 - Simulation parameters for external torque and thruster performance tuned to match recent flight telemetry
Parameters to Examine

- **High-rate to Low-rate persistence timer**
- “Factor Next Limit Cycle”
- Minimum RCS Pulse Width
- Additional parameters are discussed in the paper:
 - Walking Deadband Number of Steps Allowed
 - Walking Deadband Step-Size
 - X & Y axis deadband limits
High-Rate to Low-Rate Persistence Timer

- Cassini autonomously switches from high-rate to low-rate mode
 - Transition occurs after a timer expires if rate errors and commanded turn rates are both small
 - From 1997 until 2011, timer value: 10 min

- ACL mode transition during RWA momentum bias is undesirable
 - RWA biases frequently last longer than 10 minutes
 - Low-rate mode insufficient to control attitude error during RWA bias
 - Unnecessary transition requires more hydrazine and thruster cycles than staying in high-rate mode

- Proposed Timer Change: From 10 min to 40 min
 - Change decreases hydrazine consumption by 10% per bias
 - Cassini has performed 350 RWA biases since July 2008. Savings are significant.

ACL State Key:
6 = RWA Control Mode
5 = Low-Rate RCS Mode
4 = High-Rate RCS Mode
Parameters to Examine

- High-rate to Low-rate persistence timer
- “Factor Next Limit Cycle”
- Minimum RCS Pulse Width
- Additional parameters are discussed in the paper:
 - Walking Deadband Number of Steps Allowed
 - Walking Deadband Step-Size
 - X & Y axis deadband limits
“Factor Next Limit Cycle” Parameter

- Parameter used in adaptive pulse width logic
- Sets the one-sided deadband “target distance” to traverse

\[
t_3 = \left(\frac{\sqrt{L_2} + \sqrt{L_3}}{\sqrt{L_1} + \sqrt{L_2}} \right) \times t_2
\]

- “Factor Next Limit Cycle” = \(\sqrt{L_3} \)
- Currently parameter is \(\sqrt{0.5} \), from 1997-2000 it was \(\sqrt{0.75} \)
“Factor Next Limit Cycle” Parameter

- Controller unstable for FNLC values below $\sqrt{0.46}$
- Hydrazine consumption and total RCS pulses increase for FNLC values larger than $\sqrt{0.5}$
- Conclusion: There is no benefit in changing this parameter
Parameters to Examine

- High-rate to Low-rate persistence timer
- “Factor Next Limit Cycle”
- **Minimum RCS Pulse Width**
- Additional parameters are discussed in the paper:
 - Walking Deadband Number of Steps Allowed
 - Walking Deadband Step-Size
 - X & Y axis deadband limits
Minimum RCS Pulse Width

- FSW limit on minimum RCS thruster pulse is 7 ms
- Cassini thrusters ground tested to 4 ms pulse duration
 - Voyager program uses similar thrusters down to 4 ms

- Summary:
 - Reducing min. pulse duration to 5.75-6.75 ms reduces hydrazine consumption and total thruster pulses
 - Pulse durations shorter than 5.75 ms increase the total thruster pulses
Parameters to Examine

- High-rate to Low-rate persistence timer
- "Factor Next Limit Cycle"
- Minimum RCS Pulse Width
- Additional parameters are discussed in the paper:
 - Walking Deadband Number of Steps Allowed
 - Walking Deadband Step-Size
 - X & Y axis deadband limits

= Parameter Change Improves Controller Performance

= No Controller Improvement or Operational Reasons to Not Change
Summary of Proposed Changes

• Increase High-Rate to Low-Rate Persistence Timer from 10 min to 40 min
 – Change decreases bias hydrazine use by 10% on average
 – Improvement is independent of changes to other parameters

• Highest improvement to low-rate ACL behavior by changing:
 – **Minimum RCS Pulse Width**: Decrease from 7 ms to 6 ms
 – **Walking Deadband Steps**: Increase from 5 steps to 7 steps

• Coupling of these changes performs better than only changing one parameter
Proposed Changes

Comparison of Total RCS Thruster Pulses

Comparison of Total RCS Thruster On-Time

Comparison of Hydrazine Consumption

- Proposed Changes:
 - Walking Deadband Steps: Increased from 5 to 7 steps
 - RCS Min. Pulse Width: Decreased from 7 ms to 6 ms

- Summary of Results:
 - Average reduction is from 4 FSDS simulations using different noise seeds
 - Total RCS thruster cycles: 6% reduction
 - RCS Thruster On-Time: 45% reduction
 - Hydrazine Consumption: 28% reduction
Summary of Proposed Changes

• Simulations suggest that ACL changes decrease consumable use while in low-rate mode
 - Total RCS thruster cycles: 6% reduction (8 pulses/day reduction)
 - RCS Thruster On-Time: 45% reduction (1.3 sec/day reduction)
 - Hydrazine Consumption: 28% reduction (0.70 grams/day reduction)
 - At this rate it would take 50 days of RCS control with the changed parameters to save the equivalent hydrazine of one 35 gram RWA bias

• Nominally Cassini spends very little time in the low-rate RCS mode

• Changes to low-rate RCS parameters has little impact on operational consumable use

• If Cassini loses use of RWA control mode then the savings offered by the parameter changes becomes much more significant
Conclusion

- Adjusting Cassini ACL parameters can improve controller performance, decrease hydrazine consumption, and protect RCS thruster health

- Changes to 6 ACL parameters investigated
 - Improvement possible by changing 3 parameters:
 - High-Rate to Low Rate Persistence Timer
 - Minimum RCS Pulse Width
 - Walking Deadband Steps (see paper for more information)

- Increasing High-Rate to Low-Rate Persistence Timer from 10 min to 40 min decreases hydrazine consumption by 10%
 - Change made onboard spacecraft on July 7th, 2011

- Changes to low-rate ACL parameters present no significant savings for nominal mission
 - RCS Parameter changes may be reconsidered should Cassini ever lose use of the RWA control mode
Backup Slides
Walking Deadband Parameters

- Walking Deadband allows position error to “walk” slightly above deadband limit by integer number of steps of a fixed step width
- No obvious improvement by decreasing WDB step size
- Increasing number of steps from 5 to 7 improves RCS performance
Deadband Limit

- Cassini nominally does not increase the X & Y axis deadbands beyond 2 mrad to avoid interfering with HGA use.

- If Cassini were to spend significant periods of time on RCS control then data relay impact may be justified to decrease thruster use and hydrazine consumption.

Summary:

- ~25% reduction in thruster cycles and a ~15% reduction in hydrazine use by increasing deadband width to 3 mrad.
- Operationally, this savings is not worth the impact to HGA data relay.