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Abstract

Understanding  the  evolution  of  a  planet's  atmosphere  not  only  provides  a  better  theoretical  understanding  of 
planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of  
the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can 
simulate years of complex dynamics and chemistry. At the moment, KINETICS is in use by or planned to be used 
for:

1. The ExoMars mission to study the Martian atmosphere in 2016. 
2. Modeling of the composition of the protostellar disks which lead to star formation.
3. Examination of pollutants in Earth's atmosphere.
4. Modeling of Titan's atmosphere

Because  of  the  complexity  of  KINETICS,  it  requires  large  amounts  of  computation  to  run  simulations  at  a  
meaningful level of detail. Using MPI (Message Passing Interface), a popular multi-core programming model, will  
permit more useful experiments to be run in less time, accelerating the discovery process. The advantages of MPI lie  
in  its  exposure  of  communication,  allowing  programmers  to  manually  tune  the  communication  pattern  of  an 
application. MPI will be used with the existing FORTRAN code to parallelize and accelerate performance-critical  
sections of code in KINETICS.

I. Introduction
The understanding of the formation of a planetary body's atmosphere is important for both practical applications and 
pure science. By studying the composition of the atmosphere of Mars (for example), it is possible to not only gain a  
better theoretical understanding of planetary physics and the formation of planets but also gain insight into Earth's  
own atmosphere. However, the study of a body of particles as large as a planet or moon's atmosphere is not a simple  
task, and must be accomplished primarily using computer simulations.

To be able to trust the results of a simulation, it is necessary to represent the state of a massive body of molecules as  
accurately  as  possible.  Doing  this  is  extremely  demanding  in  terms  of  both  communication  and  computation.  
Therefore,  it  is  not  feasible  to  solve  perfect  chemical  and  dynamic  models  for  an  atmosphere.  Rather, 
approximations must be used. This leaves us with a computationally difficult task rather than a computationally  
impossible task.

To run atmospheric models and other financial, medical, and scientific applications as demanding as it, multi-core 
programming is a necessity. Multi-core programming, as opposed to sequential programming, uses many processing 
units executing independent instruction streams concurrently in order to complete a task quicker than a single, faster  
processing unit. This ability to perform simultaneous tasks is extremely useful in scientific computation, and allows  
applications to be significantly accelerated. One of the tools used at JPL for the modeling of planetary atmospheres  
and protostellar disks is KINETCS. KINETICS allows the user to provide an initial input file containing information 
on the body being simulated and take the body of interest through years of complex dynamics and chemistry. At the  
moment, KINETICS is in use by or planned to be used by:
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1. The ExoMars mission to study the Martian atmosphere in 2016.
2. Modeling of the composition of the protostellar disks which lead to star formation.
3. Examination of pollutants in Earth's atmosphere.

Figure 1: 2D dynamics simulated by KINETICS.

While KINETICS has years of development behind it (or because of the work that has been invested in it) it requires  
huge amounts of computation time to run simulations at a meaningful level of detail. Modifying the FORTRAN 
code base to take advantage of multiple cores will allow more useful experiments to be run in less time, accelerating  
the discovery process. To do this, MPI (Message Passing Interface) will be used, a common parallel programming  
model. The advantages of MPI lie with its exposure of communication to the user. Communication of data between 
physically separate computation units is often the most significant source of performance degradation in multi-core 
applications. MPI ensures that no data is shared between processors which is not explicitly communicated, and in  
this way allows the programmer to tune the communication patterns and reduce total communication. As a result,  
MPI  also  places  considerably  more  burden  on  the  programmer  to  optimize  the  application  than  other  parallel  
programming models,  such  as  OpenMP or  Java  Threads.  MPI will  be  used  with the  existing Fortran  code to  
parallelize critical sections of code in KINETICS which consume the largest amount of processor time.

II. Methods

MPI is a parallel programming model commonly used in cluster computing where several machines with multiple 
processor are connected by high latency, low bandwidth interconnect. The advantage of MPI is that it exposes any 
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and all communication to the programmer, allowing them to manually manage any data transmitted. This comes at  
the cost of more programming burden being placed on the programmer, in that any shared data must be explicitly 
communicated, but provides the parallel programmer with more power to optimize the communication patterns of 
their application.

An MPI program is just a collection of processes,  each running identical  code and only differentiated by their  
process IDs. These processes can communicate with each other whether using TCP. Because the TCP protocol is  
used for communication, from the programmers point of view there is no difference between transmitting data to  
another process on the same rack or in another room.

The code transformations necessary to move from sequential FORTRAN code to parallel MPI/FORTRAN code are 
often extensive and included:

1. Removal of COMMON blocks. COMMON blocks provide variables which can be accessed from anywhere 
in an application. While they can be useful, they tend to make code less readable and finding inputs and  
outputs of subroutines a greater challenge. In order to aid in the analysis of the code base, any sections 
which were to be parallelized had references to COMMON blocks removed.

2. Loop transformations. The most common form of parallelization is across iterations in a loop. So long as  
the work done in each iteration is independent  of the others,  this can be a simple and very beneficial 
parallelization  technique.  However,  most  code  (particularly  legacy  code)  was  not  designed  with 
parallelization in mind, but rather expressed how the programmer originally understood the concepts. It was 
necessary to transform many of the loops in KINETICS to 1) create loops which would contained sufficient 
work as to be beneficially paralellizable, and 2) ensure each iteration of these loops were independent and 
could be parallelized.

3. Insertion of MPI calls. For this program to be parallelized, many calls to communication subroutines had to 
be inserted in the original FORTRAN code. These can be split into two categories. First, MPI_BCAST calls 
were inserted in order to transmit to all MPI processes the current state of the program and ensure that they 
all had the correct inputs when entering a parallel section of code. Second, MPI_RECV and MPI_SEND 
calls were inserted after  those parallel  sections of code in order to gather the results back to a master 
process, which would then go on to use those results for additional, sequential computation.

All of the above steps required considerable by-hand analysis of the FORTRAN code for data dependencies.

When parallelizing an application like KINETICS, it  is crucial to maintain consistency with the original source  
code. When working with scientific code which will be used to expand the understanding of Earth and other planets, 
this becomes even more crucial. The primary output of KINETICS consists of a text file with information about  
each time step in the simulation, including concentrations of certain elements at different altitudes, latitudes, and 
longitudes. In order to validate the output of this code the Unix diff utility was used to compare the contents of a 
control output file and the output of the altered code. When the same compiler was used, no differences in these files  
were tolerated. Different compilers with identical code did cause differences in the output, so some tolerance for  
changes had to be made in those situations.

When first analyzing the KINETICS code, performance profiling using gprof and visualization tools was done in 
order  to  identify  those  sections  of  code  which  were  taking  up  the  most  execution  time,  and  therefore  whose 
acceleration could have the largest impact on total run time.

In addition to the work done on the actual code, it was also necessary to include the ability to use MPI in the build 
process. KINETICS supports several different compilers which can be used to build KINETICS. This is useful and 
necessary in order to distribute KINETICS, as not every researcher will have access to the same architectures or 
compilers depending on licensing issues. Therefore, it was necessary to insert a new option which included the MPI 
compiler  and the arguments to that  compiler which would be necessary to produce results compatible with the  
others. This process was a lesson in the inconsistencies which different compilers can have, and the numerical effect  
they can have on the output of an application. Simply switching from the Absoft Fortran compiler to the Intel 
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Fortran  compiler  resulted  in  significant  changes  in  the  output  of  KINETICS,  as  a  result  of  some  aggressive  
optimizations on behalf of Intel. However, the Intel compiler actually picked up on some compile time errors which 
Absoft did not. Adding floating-point accuracy options to the Intel compilation brought the two compilers into close  
agreement, but this entire task taught us something about how carefully different compilers should be used and the 
skepticism their results should be treated with.

 
Figure 2: An example of the output of a profiling session on one of the 

sample data sets.

III. Results
One result of this internship is the composition of a manual on the use of MPI. This manual includes:

1. An  overview  of  MPI.  Targeted  at  those  with  no  experience  with  MPI  or  parallel  programming,  this 
overview tries to relate MPI to more commonly understood features of computing to make MPI a more 
approachable programming model.

2. Detailed information on useful MPI subroutines.
3. More  advanced  performance  concerns  which  are  important  to  keep  in  mind  when  building  an  MPI 

application, as well as how to resolve them.
4. Compilation and Execution of an MPI program, taking the reader through the steps to build and run a 

simple MPI application.
5. A walk-through of the parallelization of matrix-matrix multiply using MPI.

The goal of this manual was to provide scientists (non-programmers) with the ability to parallelize their code.
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In order to test  the performance of the parallelized code, a data set  representing a 1D column of the Titan  
atmosphere was used. Timing was achieved using the Unix time utility.

In Figure  3, we see performance gain of the KINETICS code from 1 process to 16 processes,  achieving an 
eventual  speedup of  4.5x  (parallel  efficiency  of  29%).  While the  acceleration  is  significant,  the  gains  are  not  
efficient or linear. There are two explanations for this:

1. Amdahl's Law. Amdahl's Law places an upper bound on the amount of speedup that can be expected from 
parallelizing sections of code within a program. Because only two functions, RAD and MARCH, are being 
parallelized in this execution of KINETICS, only a certain percentage of the total execution time is being 
done in parallel. Even given perfect speed up of those sections and infinite processors, there is a theoretical 
lower bound on the measured execution time, which would be the time which the sequential sections take.  
As more of  the code is parallelized  this lower bound on execution time and upper bound on speedup  
become more beneficial, but time constraints dictated that no additional work could be done.

2. Communication. As more processes are added, more data needs to be transmitted. Rather than sending an 
array from process 0 to process 1 with 2 processes, it would be necessary to transmit that array to 15 other  
processes when using 16 processes. This places more load on the available bandwidth and can affect the 
observed  speed  up.  Again,  due  to  time  constraints  more  efficient  data  transfer  patterns  could  not  be 
implemented, which would limit the impact of this problem.

IV. Conclusion

This paper demonstrated that there are significant improvements to be gained from parallelizing the KINETICS 
code. Using MPI to limit communication and parallelize performance-critical sections of code produced speedup of 
4.5x. 

While promising results were obtained, the difficulty of working with legacy code which was never designed for  
parallelization represented a serious bottleneck in this project. The loop structure of the code did not lend itself to 
parallelization, and required some major code transformations to be done and validated. The use of Fortran common 
blocks made it difficult to analyze data dependencies between subroutines. Even the compile process presented a 
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Figure 3: Execution time of the parallelized MPI program using the Titan 1D data set and varying the 
number of MPI processes.
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challenge  as  we learned  that  different  compilers  treat  errors  in  different  ways,  produce  slight  differences  with 
completely identical code, and rely in different libraries or syntax. Overall, this added overhead consituted the bulk 
of the work done while the actual parallelization tasks were relatively simple, straightforward, and quick.

Given more time, considerably better performance could be achieved. The use of more complex and efficient  
data transfer patterns could be implemented, following a policy of copy early and overlapping communication with 
computation.  More  of  the  source  code  could  be  parallelized,  increasing  the  upper  bound  on  speed  up  while  
potentially eliminating the need to copy certain data. Additionally, more testing could be completed to further certify 
the robustness of the parallel code.

The  manual  written  as  part  of  this  work  will  hopefully  be  useful  for  future  parallelization  efforts  on  the 
KINETICS code and other scientific codes which lend themselves to parallelization. 
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