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ABSTRACT

Optical communication at the quantum limit requires that measurements on the optical field be maximally
informative, but devising physical measurements that accomplish this objective has proven challenging. The
Dolinar receiver exemplifies a rare instance of success in distinguishing between two coherent states: an adaptive
local oscillator is mixed with the signal prior to photodetection, which yields an error probability that meets
the Helstrom lower bound with equality. Here we apply the same local-oscillator-based architecture with an
information-theoretic optimization criterion. We begin with analysis of this receiver in a general framework for
an arbitrary coherent-state modulation alphabet, and then we concentrate on two relevant examples. First, we
study a binary antipodal alphabet and show that the Dolinar receiver’s feedback function not only minimizes the
probability of error, but also maximizes the mutual information. Next, we study ternary modulation consisting
of antipodal coherent states and the vacuum state. We derive an analytic expression for a near-optimal local-
oscillator feedback function, and, via simulation, we determine its photon information efficiency (PIE). We
provide the PIE versus dimensional information efficiency (DIE) trade-off curve and show that this modulation
and the our receiver combination performs universally better than (generalized) on-off keying plus photon-
counting, although, the advantage asymptotically vanishes as the bits-per-photon diverges towards infinity.

1. INTRODUCTION

It is well known that the ultimate limits of information transfer using photons as the physical information carrier
(i-e., ‘optical communication’) is determined by the quantum nature of the photons, and approaching these
limits requires that measurements on the photons extract the information encoded in their optical states with
the highest efficiency. Unfortunately, it is often a difficult and elusive goal to realize measurements that achieve
these quantum-mechanical limits. The Dolinar receiver exemplifies a rare instance of success in describing a
measurement that achieves the lowest possible error probability in distinguishing between two coherent states.!>?
In the Dolinar receiver, the input coherent-state signal is first mixed with a time-varying local oscillator, and
then is shone on an ideal infinite-bandwidth photodetector. The photodetector output up to the present time,
which is a counting process of photon-arrival events, is used to determine the local-oscillator complex amplitude
that will minimize the probability of incorrectly distinguishing between the two possible input states in the next
time increment.!>® This incremental optimization algorithm turns out to be also globally optimal, and it achieves
the Helstrom error-probability lower bound.

The success of adaptive feedback in binary state discrimination raises the question of whether its use is
beneficial in reliable transfer of information for communications. In this paper we investigate the answer to this
question. In particular, we consider optical communication using coherent-state modulation, paired with the
same adaptive local-oscillator-based receiver architecture shown in Fig. 1. However, our analysis diverges from
that of the Dolinar receiver in two significant aspects. First, because the highest rate of reliable communication
is determined by the mutual information between the encoding states and the measurement outcome (rather
than the probability of error), we modify the feedback objective such that the local oscillator strives to maximize
this information-theoretic criterion. Second, we cast the problem in a general framework suitable for studying
arbitrary coherent-state constellations (rather than a strictly binary constellation). Within this framework, we
show that the globally-optimal local oscillator can be determined by incrementally maximizing the differential
mutual information in each instant of time, conditioned on the past observations from the photodetector. We
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then proceed to derive a set of equations that must be satisfied by the optimal local oscillator, and we provide
an algorithm summary for simulating the optimal receiver.

In addition to studying this receiver architecture in its full generality, we analyze two specific examples. First,
we consider binary coherent-state modulation (e.g., binary phase-shift keying). We find, perhaps unsurprisingly,
that the Dolinar receiver’s feedback function is also the local oscillator function that maximizes mutual informa-
tion. This result implies that for this adaptive receiver architecture a hard-decision at the end of each symbol
is information lossless. This, in turn, implies that binary-phase-shift keying (BPSK) paired with this receiver
can achieve only finite bits-per-photon. The second example we consider is a ternary modulation that uses two
antipodal coherent states, and the vacuum state. The fact that the vacuum state has no photon cost implies
that this modulation scheme can achieve unbounded bits per photon.* Indeed, using simulation, we show that
this modulation and our optimal receiver architecture yields higher photon information efficiency (PIE) and
dimensional information efficiency (DIE) pairs than on-off-keying (OOK) and ideal photon-counting, although
the difference asymptotically vanishes as PIE grows larger. Unbounded PIE is not achievable with standard
homodyne detection.

Using mutual information as an optimization criterion has been considered previously for homodyne detection,
wherein the phase of the local oscillator is adaptively varied to align the receiver with the optimal measurement
quadrature.® However, the regime of interest in that work is high dimensional constellations that improve
primarily the DIE of homodyne detection in the bandwidth-constrained regime. In photon-starved channels,
homodyne detection hits a finite PIE asymptote, and therefore its performance falls short in comparison to PIE-
efficient modulation and detection schemes, such as OOK with photon-counting.®” In this work we allow feedback
to manipulate both phase and amplitude, which encompasses a significantly broader class than the adaptive
homodyne receiver, and also overcomes the finite-PIE asymptote suffered by homodyne detection. Furthermore,
we analyze two specific examples that are of common interest. Binary phase-shift keying (BPSK), is often
employed in coherent (i.e., homodyne or heterodyne) communication systems.® 19 In addition, BPSK modulation
is known to approach the ultimate limits of optical communication set by the Holevo information bound in the
photon-starved limit, although, the receiver architecture that accomplishes this is yet to be determined.®” Our
second example is a ternary modulation alphabet of antipodal coherent state and the vacuum state. Recently,
this alphabet has been utilized in an elegant receiver architecture that converts a sequence of BPSK symbols into
a sequence of correlated ternary symbols, and then utilizes an adaptive local-oscillator receiver with a simple
feedback algorithm.!! The analysis framework we develop here not only allows us to determine the optimal
feedback algorithm for this scenario, but it also permits us to unambiguously identify the regime in which the
particular algorithm used in that work becomes optimal. In addition, because unbounded PIE is achievable if
the modulation constellation contains at least one symbol that is costless, this ternary constellation could be of
interest for high-PIE communication.

Our paper is organized as follows. In Section 2 we analyze our adaptive receiver architecture in full generality.
We express the mutual information between the input symbol and the output as the integral over the differential
mutual information gained in each time increment, and we derive a pair of equations that must be satisfied by
the optimal local oscillator. We then concentrate on binary modulation in Section 3. We conduct our analysis
for binary phase-shift keying (BPSK), and then we show that the mutual information of an arbitrary binary
coherent-state constellation is the same as that of the BPSK constellation obtained by subtracting the arithmetic
mean of the coherent states. In Section 4 we introduce and study ternary modulation consisting of two antipodal
coherent states plus the vacuum state. Finally, in Section 5 we discuss the primary conclusions from our work.

2. GENERAL FORMULATION

Consider the optical detection system shown in Fig. 1. The incoming signal is a time-varying coherent-state
optical field whose y/photons/s-units complex baseband envelope is denoted by «(t). This signal field is first
displaced by a coherent-state local oscillator with /photons/s-units complex baseband amplitude «,(¢), and
subsequently, the displaced field is detected by an ideal photodetector, i.e., one with infinite bandwidth, unity
quantum efficiency, and no dark current. The measurement outcome, N (¢), is a point-process with arrival events
corresponding to photon detections. The observed process is utilized at the receiver to (causally) alter the local
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Figure 1. The general structure of an optical feedback receiver, which modifies a local oscillator field, auo(t), as a function
of the photodetector output, N(t). The orange thicker lines indicate optical fields and the thinner black lines represent
electrical signals.

oscillator such that an objective function (in this case, the mutual information between the incoming signal and
the point process) is maximized.

In accordance with a digital information transmission scenario we assume that «(t) is constant over T-second
slots and in each slot it is independently drawn from an alphabet of K coherent states with complex-valued
amplitudes {ay : k=1,...,K}, and associated a priori probabilities {qr : k = 1...,K}. Therefore, conditioned
on K =k, N(t) is a Poisson counting process with rate \x(t) = |ax + auo(t)|? for t € (0,T].* In our treatment
we shall ignore bandwidth, latency and dynamic range limitations in the feedback path and assume that the
local oscillator field (amplitude and phase) can be varied instantaneously, based on the counting process output
from the photodetector. Note that in our model the receiver enjoys infinite bandwidth, but the transmitter is
restricted to have a finite modulation bandwidth.

The maximum rate at which one can transfer information via this system, in bits-per-slot is given by the
maximum of the mutual information between the input and the output,

C= max I(K;{N(t):0<t<T}), (1)
{ar},010(t)

where the encoder chooses the optimal encoding distribution over the alphabet, and the receiver chooses the
optimal local oscillator. The receiver dynamically adjusts the local oscillator field «,(t) using the only infor-
mation it has, viz. the observed process N(7) during 0 < 7 < ¢. With no loss in generality, we assume that
N(0) = 0 with probability 1. Our approach shall be to first derive the optimal local oscillator given an arbitrary
distribution on the input alphabet, and then to maximize the resulting mutual information—with the optimal
local oscillator—over the input distribution.

THEOREM 2.1. Magzimizing the mutual information given in Eq. (1) is equivalent to incrementally mazimizing
the mutual information in the time window (t,t + At], as At — 0, conditioned on the observations up to and
including time t.

Proof. Let us begin by expressing Eq. (1) as the following limit,

(K {N():0< t <T}) = (55 (N b2 (2)

lim T
AT—0
where Ny, = N((m + 1)AT) — N(mAT), and {Np}7* = {Nj,..., Ny} for j < m. We can now use the chain
rule for mutual information to expand the argument of the limit as

|T/AT|

I(K:;N,|{N,, ™!
I(K;{Nm/}(le/ATJ)Z Z AT ( ) |{ }O )
=0

AT : 3)

Because N(t) is a well-defined point-process, the second term inside the summation converges to a limit as AT
converges to 0.12 Then, substituting Eq. (3) into Eq. (2) and taking the limit, we obtain
r I(K;N(t+AT) - N@){N(r): 7 € (0,8]})

I(K;{N({t):0<t<T}) = i dt lim AT : (4)

*For analytic convenience we have assumed that the slot of interest corresponds to the time window [0, 7).



The conditional mutual information in the integrand is, by its definition, equal to
I(K;N(t+ AT) — N(t){N(r) : 7 € (0,1]}) = En [i(K; N(t+AT)— N@#){n(r) : 7 € (0, t]})} , (5)

where Ex[-] denotes expectation over the point process {N(7):0 < 7 < t}, and i(K; N(t + AT) — N(t)|{n(7) :
7 € (0,t]}) is the mutual information conditioned on a particular realization of the point process N (t), which
we have denoted by the lower case function n(t). Because the local oscillator ay,(t) depends causally on n(t), we
arrive at our final expression

max [(K;N(t):0<t<T) = /T QEy [max lgm SENEHAT) = N(Dlin(r) : 7 € 0.1}
oo (1) ' ' - o oo(t) AT=0 AT

]. (6)

We refer to the limit inside the expectation as the differential mutual information, as it is a measure of incremental
gain in mutual information as a function of time.

Equation (6) shows that the local oscillator that maximizes the mutual information between the input symbol
K and the photodetector output N(t) over 0 < ¢t < T can be chosen at each time instant ¢, such that it incre-
mentally maximizes the differential mutual information at the next time instant, conditioned on the observations
up to and including ¢. O

In order to evaluate Eq. (6) explicitly, we turn our attention to the numerator in the limit expression. This
term is given by

i(K; N(t+ AT) — N@)|{n(1);T € (O,t]}) =
H(N(t+AT) — N(t){n(r);7 € (0,4]}) — H(N(t + AT) — N(t)|K, {n(r);7 € (0,4]}), (7)

where H(-) is the well-known (discrete) entropy function.'® Using the fact that N(t + AT) — N(t) is a Poisson
random variable when conditioned on K and «j,(t), and a compound Poisson random variable when conditioned
on ay,(t) alone, we show in Appendix A that the limit expression in Eq. (6) simplifies to

lim i(K;N(t—I— AT) = N@)|{n(r);T € (O,t]})

K
Jim o = —Xlog A+ > prAilog Ak, (8)

k=1

where all of the time-dependent variables are evaluated at time ¢, and we have suppressed showing their time-
dependence to simplify our notation. Here A\;, = |ap + auo|? for k € {1,2,...,K}, pr = P(K = k|{n(r) : 0 <
7 < t}), and X = Y, pr k. Note that —Alog()\) is a concave function of A, so the right-handside of Eq. (8) is
nonnegative, as required from an information metric.

Next, we must maximize the right-hand side of Eq. (8) to find the optimal local oscillator. Denoting «y, =
aexp(ig) we find that the critical points of the maximization occur at a and ¢ values that satisfy the system of
equations

S ptos (%) (a-+ ol cos(o — ) = 0 o)
k
Zk:pk log (%) sin(¢ — ¢r) =0, (10)

where ¢, = Zag and a > 0. Finding the analytic solutions to these equations for arbitrary «j is nontrivial.
However, it is easy to verify that if all o have common phase up to a m phase shift, then the local oscillator
must be either in phase or out-of-phase with the constellation as well, i.e., if all of the constellation points are
along a line in the complex plane, then the optimal value of the local oscillator will also reside on this line.

The formalism we have presented in this section provides a system of equations that, in principle, can
be solved for an arbitrary constellation to yield the local oscillator that incrementally maximizes the mutual
information in the next time instant. The optimal local oscillator not only depends on the constellation points



ag, but also on the probability of each hypothesis conditioned on the arrival process up to and including ¢, i.e.,
pr(t) = P(K = k|{n(7) : 0 < 7 < t}). The evolution equations for the probability of each hypothesis is obtained,
via Bayes’ rule, as

P(N(t+AT) — N(t)|K = k,{n(r) : 7 € (0,4]})

pr(t+ AT) = kak(t)P(N(t—l-AT) — N@WIK =k, {n(r): 7€ (0,t

pi(t). (11)
)
For AT « 1, we have that

1—ATX. + o(AT) form =0
P(N(t+AT) — N(t) = m|K =k, {n(7) : 7 € (0,1]}) = { AT\ + o(AT) for m=1 (12)
o(AT) for m > 2,
where we refer to a function f(z) as o(z) if lim,—¢ %“”) = 0. With some additional manipulation of Eq. (12),

we find that py(¢) evolves continuously except for jump discontinuities at the instances corresponding to photon

detections. In particular, if ¢; for i = 1,..., N(T') denotes the photon detection epochs, we have
d —
ZiPr(t) = A0 = A (®)]pe(t) (13)
fort; <t < tit1 and
i (ts)
th) == ti), 14
P = S S melt) (14)

where we have used py () to represent the limit of py(t) as ¢ approaches t; from the right. Note that Eqs. (13)
and (14) jointly ensure that Y, px(t) =1 for 0 <t <T.

The solutions to the optimality criteria in Eqgs. (9)—(10), together with the evolution equations for the con-
ditional probabilities given in Eqgs. (12), (13) and (14), provide a complete description of the adaptive feedback
receiver that maximizes the mutual information between the input and the photodetector output for a given a
priori input distribution. Unfortunately, closed-form analysis of the performance of this receiver is not straight-
forward in the full generality of this formalism, except for some simple special cases (e.g., see next section).
Nonetheless, this receiver can be numerically simulated in full generality utilizing the following algorithm:

I. INITIALIZE:
i. Determine true hypothesis &', using the a priori probability distribution on the signal constellation,
{qx : k=1,...,K}.
ii. Choose step size AT, such that maxy o, |or + a10|?AT < 1 prevails.f
iii. Set pr(0) =g for k=1,...,K.
II. REPEAT for m=1,...,|T/AT|:
i. Find optimal oqo(mAT) solving Egs. (9) and (10), or numerically maximizing the right-hand side of
Eq. (8).
ii. Update A\ (mAT) using the updated local oscillator value from previous step.

iii. Simulate a Bernoulli random variable according to Eq. (12), with probability of 1 given by AT A (mAT)
where k' denotes the true hypothesis.

iv. Update conditional probabilities of each hypothesis py(mAT) according to Egs. (13)—(14), and de-
pending on whether an arrival occurs in previous step.

v. Increase m by one and return to step II.

In our theory |aio| can grow unbounded. However, in our simulation |auo| is necessarily finite. The maximization is
over this finite support for feasible oy, values.



III. END.

In order to develop some insight into the mutual-information maximizing receiver performance, we next
concentrate on two examples: a binary and ternary constellation. As we shall see shortly, the former case lends
itself to a complete analytical solution, while the latter necessitates numerical evaluation of its performance.

3. BINARY SIGNALING CONSTELLATION

In this section, we first analyze an antipodal (BPSK) signaling scheme, and later show that the performance of
any two-element coherent-state alphabet is equivalent to that of an antipodal alphabet derived by subtracting the
arithmetic average of the two (complex-valued) coherent states. Consider BPSK with {|a),| — @)} denoting the
two real-valued coherent-state field envelopes having units of \/photons/s. Because the optimal local oscillator
is also real-valued, we concentrate on the solution to Eq. (9), which simplifies to

s (% +1) log (%) +(1-py) (% — 1) log (%‘) —0, (15)

where we have denoted the parameters related to |«) with the subscript ‘+’ and those related to | — ) with the
subscript ‘—.” The solution to this equation is given by

(0%

(16)

ap = ——.

lo 1— 2p+
The solution in Eq. (16) implies that when p; > 1/2 the local oscillator becomes negative so that it is attenuating
the signal that is more likely in each incremental step and, consequently, amplifying that which is less likely. Thus,
if the receiver has deemed the true hypothesis as the more likely one, the probability of an arrival gradually
decreases in subsequent increments, whereas if the receiver’s guess is incorrect the probability of an arrival
increases.

Substituting the solution into Egs. (13) and (14), we obtain the evolution equations

1) = 10217220040 (7
and
p+(t) =1—pi(ts), (18)

respectively. From these expressions it is straightforward to show that p(t)(1 —p(t)) follows the deterministic
trajectory

2
p+(t)(1 = ps(t)) = p4+(0)(1 — p1(0)) e, (19)
for 0 <t < T, which allows us to write the optimal local oscillator as
a(—1)N®
(t) = ) _.
\/1 —4p1(0)(1 — py(0))e—o?t

Qlo

(20)

where we have made use of the equality |1 — 2py (t)| = /1 —4p,(t)(1 — po(t)). Finally, substituting this local
oscillator into Eq. (8) gives

/S 2 —40%t _ _ €—4a2t
_RlgsE Zpk)\k log A = 40%p, (0)(1 — p4+(0))e™* log 1+ \/1 4p4(0)(1 — p4(0))
= \/1 —4p+(0) (1 — p4(0) ) e~ et 1= \/1 —4p;(0)(1 = p4(0)) 4ot

which has no dependence on N(t).
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Figure 2. The capacity and efficiency trade-off curves for a BPSK coherent-state constellation and the adaptive local-
oscillator receiver, which is achieved when p4(0) = p—(0) = 0.5. The receiver is equivalent to the Dolinar receiver. (a)
The capacity as a function of the mean detected photon number ngs. (b) The photon-information efficiency (PIE) versus
the dimensional information efficiency (DIE).

We are now able to state our end result, i.e., the mutual information between the input and the output.
Substituting Eq. (21) into Eq. (4) and evaluating the integral yields

I(K;{N(t): 0 <t <T}) = ha(p+(0)) — ho(Per) , (22)

where ha(p) = —plog(p) — (1 — p)log(1 — p) is the binary entropy function, and

P = % (1 — /14,01 —p+(0))e—4a2T> (23)

is the probability of symbol error from a hard decision at the end of the observation interval. Because mutual
information can be expressed as

I(K;{N®#):0<t<T})=H(K)- H(K|{N(t):0<t<T}), (24)
and H(K) = ha(p4+(0)), we conclude that entropy of the input conditioned on the output is
H(K|{N(t) : 0 <t <T}) = ho(Per). (25)

This equality holds for an arbitrary input distribution. It follows from the observation that if the ‘+’ hypothesis
is assigned to 0 and the ‘—’ is assigned to 1, then the modulo-two sum of the input and the maximum-likelihood
output hypothesis is independent of N(t) for 0 <t < T.3

The maximum of Eq. (22) over the input distribution is achieved at p4(0) = p_(0) = 1/2, and results in the
capacity
C = m%(%(K; {N(t):0 <t <T})=1— hy(Pe) bits/channel use. (26)
P+
Figure 2(a) shows this capacity as a function of the mean photon number of the input signaling constellation,
ns = o?T. As the mean photon number increases the probability of error decreases and the capacity approaches
the entropy of the input, i.e., 1. In Figure 2(b) we have plotted the PIE versus DIE trade-off curve for this



BPSK plus adaptive-feedback receiver architecture, where the PIE is defined as C/ns in bits-per-photon, and
the DIE is defined as C, in bits-per-channel use (or bits-per-slot). Here we see that the photon efficiency of this
architecture is bounded to a finite PIE of 41log(2) = 2.77 bits/photon.

At this juncture we revisit the local oscillator function we derived in Eq. (16) and note that it is identical to
the local oscillator function employed in the well-known Dolinar receiver.! The Dolinar receiver is an adaptive
feedback receiver of the form shown in Fig. 1, in which the local oscillator is chosen such that the receiver can make
a minimum probability of error decision between two BPSK symbols. The Dolinar receiver has earned its fame
for achieving the Helstrom bound, i.e., the minimum error probability that is quantum-mechanically permissible
in distinguishing these two non-orthogonal states.? The analysis in this section shows that the Dolinar receiver
is also optimal in maximizing the mutual information between the input symbols and the photodetector output
for a binary coherent-state constellation. Therefore we conclude that there is no soft-information available in
the Fig. 1 feedback receiver architecture when the input is from a binary coherent-state constellation. However,
because an upper bound on the highest achievable mutual information with single-symbol measurements is not
known,? ™ our result does not eliminate the possibility that a receiver architecture outside of that considered
herein could achieve higher mutual information.

We have thus far considered BPSK signaling, but the results extend trivially to arbitrary binary coherent-state
constellations with arbitrary a priori probability distributions. Suppose we have {|a1), |az2)}, where oy, s € C.
Then the optimal local oscillator function «y, must be

1 )
Qo = —5(041 +ag) +¢al,, (27)
where § = Z(a; — a3), and o], is the optimal local oscillator for the real-valued and antipodal constellation

{|=la1 — a2|/2), |lax — a2]/2)}. (28)

In other words, a fixed offset and rotation will transform two arbitrary coherent states into real-valued and
antipodal coherent states. Since both of these operations are achievable with a local oscillator, finding the optimal
local oscillator for a real-valued BPSK constellation is sufficient to determine that for any binary coherent-state
alphabet.

4. TERNARY SIGNALING CONSTELLATION

In this section we consider a ternary constellation {| — ), |0}, |@)}, where |£«) are antipodal real-valued coherent
states, and |0) is the vacuum state. Once again, because all constellation points are real-valued, the optimal
local oscillator is also real-valued. Thus we need only find a solution to Eq. (9), which simplifies in this case to

Qlo A Ao )\+ o )\O _
p_ (? - 1) log (T) +py (? + 1) log <7> +(1=p-—ps) 2 log (7 —0. (29)

Here the subscripts {—,0,+} refer to the inputs in the same order that they are listed above, and we have
suppressed the time dependence to reduce notation clutter.

The analytic solution to this equation is intractable, although it can be solved numerically. In lieu of an
optimal solution, let us propose a heuristic local oscillator function that—as we shall show shortly—performs
almost as well as the optimal local oscillator. Let us derive inspiration from the Dolinar receiver local oscillator
function whose magnitude evolves deterministically. Suppose we choose a local oscillator as

1+p_+py _
g = 5=y 1> (p— +p+)log(p- +p+)
0 otherwise,
where

I = [py(xo+1)* = p—(x0 — 1)*] log (22 i_ 1) +[1 = p4 — p-]log (x%xi 1) (31)
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Figure 3. The objective function is plotted as a function of the normalized local oscillator & = auo/« for several probability
distributions on the three hypotheses. The optimal value of the local oscillator is shown with a cross (Xx), and the analytic
approximation given in Eq. (30) is shown with a square (). While the analytic approximation may not be very close to
the optimal value, the difference in the differential mutual information is small in all instances shown here.



where zo = (1 + p— + p4+)/(2p— —2p4). The first case in Eq. (30) is the solution that results in

Sl w] =50 T wo) (32)

k={—,0,+} k={-,0,+}

in between photon detection epochs, i.e., the product of the probabilities for the three input states evolves
deterministically between photon detection events.* Furthermore, when po(0) = 0, the local oscillator reduces to
that derived in Section 3. On the other hand, the second case in Eq. (30), i.e., ayo = 0, is the optimal solution
when the vacuum state has a high-enough likelihood. In Fig. 3 we compare the performance of this heuristic
local oscillator to that of the optimal local oscillator, for several different probability distributions. We see that
in the cases where the heuristic local oscillator notably differs from the optimal value, the objective function
is rather flat around the maximum, which results in a minor performance penalty. On the other hand, when
the differential mutual information is peaked around its maximum, the Eq. (30) local oscillator agrees well with
the optimal value. This agreement is also evident in the Fig. 4 plots, where we have numerically evaluated and
plotted the mutual information obtained with the optimal local oscillator and that obtained with the heuristic
approximation we have provided in Eq. (30). The performance with the two local oscillators demonstrates very
good agreement in all instances.

In Fig. 5 we have empirically estimated the PIE versus DIE trade-off curve for the ternary alphabet plus
the optimal adaptive-feedback receiver combination studied in this section, by taking the convex hull of the
trade-off curves attained with numerous input probability distributions of the form p; (0) = p_(0). In addition,
we have plotted the trade-off curves for other known modulation and receiver pairs, as well as the ultimate limit
determined by the Holevo information bound. Figure 5 shows that the ternary alphabet and adaptive feedback
receiver pair universally attains higher PIE and DIE than both OOK plus photon-counting, and BPSK plus the
Dolinar receiver. In addition, the (PIE, DIE) pairs attained with the ternary modulation plus adaptive receiver
asymptotically approaches that attained with OOK plus photon-counting. These are not surprising results. The
ternary modulation alphabet encompasses both coherent-state OOK and coherent-state BPSK, and the adaptive
feedback receiver encompasses the Dolinar receiver (which is optimal for both the OOK and BPSK modulations).
So, the performance with a ternary alphabet and the optimal adaptive feedback receiver should encompass the
performance achievable with the other two modulation and receiver pairs. Furthermore, high PIE is achieved in
the very low mean photon-number regime. In this regime, the added information from two antipodal coherent
states is not significantly larger than that provided by the ‘on’ versus ‘off’ states. Hence the performance of
OOK plus photon-counting and the ternary modulation plus adaptive feedback receiver should indeed converge
at the high PIE limit.

It is well known that the OOK plus photon-counting curve asymptotically approaches the ultimate limit
set by the Holevo bound (see curve marked ‘Gauss. + ult.” in Fig. 5). Because the ternary modulation plus
adaptive feedback receiver lies between these two curves, it too asymptotically approaches the Holevo bound.
Unfortunately, however, this receiver closes only a small fraction of the gap that exists between photon-counting
and the ultimate limit at finite PIE or DIE.

Before we end this section, let us revisit the local oscillator function that has been used in the quantum
joint-detection receiver (JDR) of Guha et al.!! In that work, a receiver of the form we have presented here is
used to distinguish the same ternary alphabet we have analyzed, with the input distribution p_(0) = p+(0) =p
and pp(0) = 1 — 2p for some p € [0,0.5). Their feedback algorithm sets the local oscillator to 0 until the first
photodetection event occurs. If a photon is detected then the local oscillator is instantaneously set to that of the
Dolinar receiver for the remainder of the observation window. If no photon is registered, then the local oscillator
remains 0 until the end of the observation window and the decision is the vacuum state. One might inquire about
the optimality of this intuitive strategy, which we can now unambiguously answer using the formalism we have
developed herein. Using the approximate local oscillator solution in Eq. (30) and comparing I to —2plog(2p),
we find that a1(0) = 0 is optimal when p < 0.5¢72 ~ 0.068. Furthermore, as long as no arrivals are detected

tA photon detection event at t; yields | PR (th) = zzz—il [Ti—( 04y Pr(ti), in terms of z = auo/cv, so unlike
the binary case a photon detection results in a discontinuity in the product of the probabilities for all finite x.
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Figure 4. Simulation results for the mutual information between K and N(¢) as a function of the mean photon number
ng, for various input distributions on the three hypotheses. The mutual information attained with the optimal local
oscillator is shown with the solid line interspersed with square markers. That attained with the Eq. (30) approximation to
the local oscillator is shown with the dash-dotted line interspersed with circle markers. In all instances, there is excellent
agreement between the two cases. The dashed horizontal line is the entropy of K, which is the high-ngs asymptote for the
mutual information.
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Figure 5. The empirically-derived PIE versus DIE tradeoff curve (red) for the ternary modulation {| — a),|0),|a)},
and the adaptive local-oscillator receiver studied in Section 4, compared against the ultimate limit attained with isotropic
Gaussian modulation over coherent-states (green dashed), that attained with generalized on-off keying modulation (OOK)
modulation with ideal photon-counting (black dashed), and that attained with binary phase-shift keying (BPSK) and the
Dolinar receiver (magenta dotted line). The simulation data that is the basis for the ternary-modulation trade-off curve
is also shown for completeness (gray thin lines).

p+(t) and p_(t) continue to decrease (see Eq. (13)), so, the optimal local oscillator remains ajo(¢) = 0 until an
arrival is registered. If an arrival is registered at 1, then via Eq. (14) we conclude that

po(tf) =0, (33)
_ pi(t1) 1

Pl = o) + o) 2 o
_ p_(t1) 1

P =) ) 2 &

prevails, i.e., the probability of a vacuum-state input vanishes and the local oscillator simplifies to that of the
Dolinar receiver studied in the previous section, with the input probabilities given by Egs. (34) and (35). We
therefore conclude that the strategy utilized by Guha et al.!! is optimal only if the a priori probabilities of the
antipodal coherent-states are each no greater than 0.5¢=2 ~ 0.068.5 We have empirically observed in plotting
Fig. 5 that this condition is satisfied for PIE; 2.5 bits/photon.

5. CONCLUSIONS

In this paper we have studied the class of optical communication receivers that utilize local-oscillator-based
optical feedback within one symbol in order to maximize the mutual information between the coherent-state
input symbol ax and the observed photon-detection counting process N (t) for 0 < ¢ < T. We first developed
a general framework to study the receiver architecture that we introduced in Fig. 1. We showed that the local

$Note that a hybrid pulse-position-modulation (PPM)-BPSK alphabet with PPM order > 8 satisfies this condition.



oscillator function that maximizes the mutual information between the input symbol and the output counting
process can be determined incrementally, i.e., it is optimal to choose the local oscillator such that it maximizes
the differential mutual information in the next instant of time, given the entire history of the photon-counting
process up to the current time. We then derived a system of two equations that determine the critical points
of the objective function. This showed that the optimal local oscillator is a function of the signal alphabet
{ag. : k =1,...,K}, and the probability of each hypothesis at the current time conditioned on the arrival process
up to that time, {n(7) : 0 < 7 < t}. We concluded our general formulation by deriving the evolution equations
for these conditional probabilities. Collectively, this provided a complete description of the receiver with the
optimal feedback function, whose performance could be simulated with the algorithm we presented as part of
Section 2.

The two sections following this general framework were devoted to studying two cases of interest. First,
in Section 3 we considered BPSK modulation. Perhaps not too surprisingly, the optimal local oscillator was
identical to that of the Dolinar receiver, which achieves the Helstrom lower bound in the error probability of
distinguishing between the two input states. Thus, we concluded from our analysis that, with binary coherent-
state modulation, there is no soft information in the output process from the photodetector, N (t). In other words,
making a hard decision on the input symbol at the end of the observation window is information lossless. In
Section 4 we expanded the binary constellation of Section 3 to include the vacuum state, thereby including a state
in the alphabet that costs no photons to transmit. This constellation has been of interest recently in relation to
the performance of hybrid modulations, and that of an optical-communication receiver architecture that detects
symbols jointly over multiple channel uses. We proposed a heuristic local oscillator function in analytic form—
which was inspired by the Dolinar receiver’s local oscillator function—and showed that its performance was very
close to that of the optimal local oscillator (which had to be solved for numerically). In addition, we showed
that the local oscillator function employed in the joint-detection receiver of Guha et al. is the optimal strategy
if and only if the energy-containing symbols each have a priori probabilities less than approximately 0.068. This
occurs when the PIE exceeds approximately 2.5 bits-per-photon.

Before we conclude this article, it is worthwhile to briefly address the bandwidth assumptions of our work.
Throughout our analysis we have assumed that the transmitter is bandwidth-limited, such that each channel
use corresponds to 7" seconds during which the transmitted symbol remains unchanged. The receiver on the
other hand enjoys infinite bandwidth in several respects. First, the photodetector has infinite bandwidth such
that individual photon detection instants are resolvable. Second the feedback path enjoys zero delay and infinite
bandwidth such that the local oscillator can be adjusted instantaneously. Of course, both of these are unrealistic
assumptions and would need to be addressed in a practical implementation. However, we have employed these
assumptions because they greatly simplify the analysis and the results are informative of the ultimate gains that
are offered by local-oscillator-based optical feedback at the receiver.

In summary, we have analyzed the mutual information that can be obtained with an optical-communications
receiver employing ideal local-oscillator optical feedback. We have provided a general formulation that can be
used to analyze arbitrary signal constellations, and we have treated two simple cases of interest, highlighting the
utility of our theoretical analysis framework.

APPENDIX A. DERIVATION OF THE DIFFERENTIAL CONDITIONAL MUTUAL
INFORMATION

From Eq. (6), we need to evaluate

i i(K;N(t—l— AT)— N@t){n(r) : T € (O,t]})
AT=0 AT '

The numerator inside the limit can be written as

i(K; N+ AT)— N@®)|{n(r): 7€ (O,t]}) =
H(N(t+AT) - N@®){n(r): 7€ (0,¢]}) — H(N(t + AT) — Nt)|K,{n(7) : 7 € (0,4]}), (37)



where H(X) = —Ex[log(p(X))] is the well-known discrete entropy function for a random variable X having
the probability mass function p(x). Because the arrival process n(7) for 7 € [0,t) and the a priori probability
distribution {px(0)} completely determines the local oscillator ayo(t), N(t + AT) — N(t) conditioned on K = k
and n(7) for 7 € [0,t) is a Poisson random variable with mean value AT A\, (¢), where

Ak(t) = o + ano(t)? (38)
t+AT

for small AT such that [, drAi (1) = ATX;(t). Using tight bounds on the entropy of a Poisson random
variable,? and dropping the time dependence to avoid notation clutter, we can express

H(N(t+ AT) — N(@#)|K,{n(r) : 7 € (0,#]}) = Ex[~AT g log(AT k) + AT k] + o(AT) (39)
K
= —AT> ppArlog(Ar) — AT log(AT)X + ATX+ o(AT),  (40)
k=1

where p, = P(K = k|{n(7) : 0 < 7 < t}) refers to the conditional probability of s, and where A = Z),f:l DrAk-
Let us now turn to the first term in Eq. (37), noting that N (¢ + AT) — N(t) conditioned on {n(7) : 7 € (0,¢]} is
a compound Poisson random variable with a probability mass function

Zpk

where we have temporarily defined M = N(t + AT) — N(¢)|{n(7) : 7 € (0,t]} for convenience. The entropy of
this random variable is

)\m _>\k

(41)

H(M) = —E(log(pn(M))] = Ey[log(M!)] - f(AT), (42)

where ”
f(AT) = Ey |log (Z pk(ATAk)Me—ATM)] : (43)

k=1

Using iterated expectations and the fact M|K is a Poisson random variable one can show that Eps[log(M!)] =
o(AT),* so that H(M) = —f(AT) + o(AT). Therefore the final step is to find f(AT). We first express f(AT)
as

oo K K
1 m ,— m _ ,—
fAT) =" — > (AT e ATM] log (Z pe(AT ) ™e ATM) : (44)
m=0 k=1 =1
then, utilizing Taylor series expansions, we obtain
f(AT) = —ATX+ ATXlog (ATA) + o(AT) . (45)
Thus, the entropy of the random variable M is given by
H(M) = —-ATXlog A — AT log(AT)X + ATX + o(AT) . (46)

Finally, substituting Eq. (40) and (46) into Eq. (37), and then taking the limit in Eq. (36), we arrive at

([ — n(t): 7 -
Al%fgo Z(K, N(t—l— AT) ]Z(;N{ ( ) S (07t]}) _ —)xlog _|_ ;pkkk 10g(>\k) (47)

as we have reported in Eq. (8).
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