
Functional Programming
and

Multi-core

Kim P. Gostelow
Jet Propulsion Laboratory, California Institute of Technology

August 2 , 2011

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.

• Concurrency/Parallel Programming
• For speed and reliability
• For general computing

– Not just for special applications

• Policy-based Computing
– Policies change in real-time
– Examples

• Reliability requirements
• Timeliness requirements

– Precision
• Power and other resources

• A new knob to turn for system tradeoffs
– More power > more speed and/or reliability
– Without affecting the other, ongoing computations

What Multi-core Allows Us To Do

2

Examples

• Produce the best result in this estimation
loop in 2 milliseconds.

• Use sequential-TMR for attitude control for
the next 3 hours.

• You have 3 watts for entry.
• Do this in 2 milliseconds, or quit.
• If a processor or comm link fails, try again

once.

3

• It need not be hard
• An old idea: Functional Programming

– Every call to a given function produces the same
result

• This ensures
– Concurrency is the default, not sequentiality
– Extra-functional properties

• Automatic parallelization at run-time
– Any two non-dependent sub-expressions can run at the

same time
• Can copy/move/stop and restart any function at any

time

4

Isn’t Concurrent Programming Hard Enough
Already?

What is a Functional Language?

• For programming, the consequences of the above are:
– Immutable values

• Can define a value only once (a variable has only one meaning)
• Variables are mathematical variables

– Not memory cells that can be modified/replaced/updated
– No shared memory
– Deterministic
– No side-effects

5

The relation f: A->B is a function if:
 For-all a in A there is a unique b in B such that f(a) = b

Functions

6

extern int sum;

int A(int a) {
 sum = get_clock();
 for (int i=0; i<a; i++)
 sum += f(i);
 return sum;
}

int B(int a, int time) {
 for i=0 .. a
 v[i] = f(i);
 return accum(v) + time;
}

The relation f: A->B is a function if:
 For-all a in A there is a unique b in B such that f(a) = b

Not a
function

Function

Can run in
parallel if f is a

function

Requirements on Implementing Policies

• The policies
– Reliability, Timeliness, and Power

• The requirements
– It must be system code and operate

automatically
– It must not involve the programmer
– Operates in Real-time

7

How Do We Implement Policies?

• At function calls
– Extra-functional code is inserted and wraps the

affected programs
– Functions called are assigned to differing

numbers of processors

8

Example: Reliability

• “Use sequential-TMR on attitude-control for
the next three hours.”

acs

sensor input x

actuator output y

acs1 acs2

x x

y1 y2

Sequential-TMR(acs)

save(x)
y1 = acs(x) || y2 = acs(x)
if y1 == y2 then y1
 else { y3 = acs(retrieve(x))
 if y1==y3 or y2==y3 then y3
 else fail }
release(x)

x

y

Mini-checkpoint:
not a large, centralized
checkpoint

9

Example: Timeliness

• “Get the best estimate you can in 2 ms.”

f

g
h

f g h 2 ms

f, g, and h
compute the

“same”
function but
take differing
amounts of

time

10

Example: Power

• “You have 3 watts to do entry.”

f

g

h

P

P’

P”

. . .

|P| = 4 vs. 1

g’
P’

g”

. . .

h’
P”

h”

P is the set of processors
allocated by the system to run f
and is instantiated at run-time.

let f(x) = { … g(u) … h(v) … }

 where g(x) = { … g’() … g”() … }

 h(x) = { etc. }

This might translate
into an assignment
of 4 cores to function
f rather than the
usual 1 core.

11

Not Everything

• Not everything should be done functionally
• Small parts of most programs have some

kind of non-functional behavior that
requires special treatment
– Clock: get_time()
– Database access
– Nested Timeliness policies

12

Can Loops and I/O Be Functional?

The short answer is yes

• Loops

– A loop is a recurrence relation
• Previous “sum of f(i)” was empty recurrence with empty state

– An old idea: We make the loop state explicit

• Functional I/O has been a long-standing problem
– Unsatisfactory “solutions”: Monads in Haskel; mutable in

Fortress; unique type in Clean
– Different view here

• A file is a logical data structure
– A list, array, tree,or other sturcture
– It is not a sequence of raw, physical records

• Separate logical order from physical position

13

Example: A Simple Loop (1)

3/9/11 14

The factorial sequence (1 1 2 6 24 120 ...) is defined by
the recurrence relation

 si = i × si-1 where s0 = 1.

int factorial(int n) {
 int s= 1;

 for (i=1; i<n+1; i++) {
 s = i * s;
 }
 return s;
}

A typical C program to compute
the nth factorial for n = 0, 1, …

15

int factorial(int n) {
 return
 initially
 int s = 1;
 recur j = 1..n+1 {
 next s = j * s;
 }
 finally last s;
}

An implicit last step:
 s[i+1] = next s

As a state-aware functional program

• Variable “s” represents a stream of state values s[0], s[1], …
• The computer need keep only the current and the next s[i] at any

time.

Example: A Simple Loop (2)

I/O

– Different view here
• A file is a logical data structure

– A list, array, tree,or other sturcture
– It is not a sequence of raw, physical records

• Separate logical order from physical position
– Examples

• A list of text records ti: the list position i is written along
with the contents as <i, ti>; the order of <i,ti> in the
actual file is not necessarily “in order”.

• HDR for files uses a tree
– Consequence for the programmer

• Look at a file as another name for a variable
– Just as if assigning values to an array

16

Simple Rules Work

• To write programs as functions
– Often only small changes are needed

• Move state changes outside
• Move calls to non-functions outside

– No shared memory
– Don’t create state where it isn’t necessary

• Don’t re-use variable names – each name has
one meaning, one value

17

Summary

• Policy-based computing requires programs to
have extra-functional properties

• The extra-functional properties of interest are
– Start/stop/restart
– Copy/reproduce
– Move and distribute

• These properties are assurred when
programs are functions.

18

References

• Dennis and Misunas “A Preliminary. Architecture for a Basic
Data-Flow Processor”. 1975 Sagamore Computer Conference
on. Parallel Processing

• Gostelow “The Design of a Fault-Tolerant, Real-Time, Multi-
Core Computer System” IEEE Aerospace Conference, Big
Sky, MT 2011

• Milojicic, Douglis, Paindaveine, Wheeler, and Zhou “Process
Migration Survey” ACM Computing Surveys Sept 2000.

• Arvind, Gostelow, and Plouffe “Indeterminacy, Monitors, and
Dataflow” Proc 6th ACM Symposium on Operating Systems
Principles

• Fortress Programming Language
http://projectfortress.java.net/

19

http://projectfortress.java.net/

	Functional Programming�and�Multi-core
	Slide Number 2
	Examples
	Isn’t Concurrent Programming Hard Enough Already?
	What is a Functional Language?
	Functions
	Requirements on Implementing Policies
	How Do We Implement Policies?
	Example: Reliability
	Example: Timeliness
	Example: Power
	Not Everything
	Can Loops and I/O Be Functional?
	Example: A Simple Loop (1)
	Example: A Simple Loop (2)
	I/O
	Simple Rules Work
	Summary
	References

