Functional Programming
and
Multi-core

Kim P. Gostelow
Jet Propulsion Laboratory, California Institute of Technology

August 2 , 2011

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.

What Multi-core Allows Us To Do

« Concurrency/Parallel Programming
* For speed and reliability

« For general computing
— Not just for special applications

« Policy-based Computing
— Policies change in real-time

— Examples
 Reliability requirements

* Timeliness requirements
— Precision

« Power and other resources
* A new knob to turn for system tradeoffs
— More power > more speed and/or reliability
— Without affecting the other, ongoing computations

Examples

 Produce the best result in this estimation
loop in 2 milliseconds.

« Use sequential-TMR for attitude control for
the next 3 hours.

* You have 3 watts for entry.
* Do this in 2 milliseconds, or quit.

* |f a processor or comm link fails, try again
once.

Isn’t Concurrent Programming Hard Enough
| Already?

* |t need not be hard

* An old idea: Functional Programming

— Every call to a given function produces the same
result

* This ensures
— Concurrency is the default, not sequentiality

— Extra-functional properties

« Automatic parallelization at run-time

— Any two non-dependent sub-expressions can run at the
same time

« Can copy/move/stop and restart any function at any
time

What is a Functional Language?

The relation f: A->B is a function if:
For-all a in A there is a unique b in B such that f(a) = b

« For programming, the consequences of the above are:

— Immutable values
« Can define a value only once (a variable has only one meaning)

» Variables are mathematical variables
— Not memory cells that can be modified/replaced/updated

— No shared memory
— Deterministic
— No side-effects

Functions

The relation f: A->B is a function if:
For-all a in A there is a unique b in B such that f(a) = b

Not a Function
function

extern Ant sum;
int B(int a, int time) {
int A(int a) { for i=0 .. a
sum = get clock(); v[ii] = £(1);
for (int i=0; i<a; i++) return actum(v) + time;
sum += f (i), }
return sum;

}

Canrunin

parallel if f is a
function

Requirements on Implementing Policies

* The policies
— Reliability, Timeliness, and Power

* The requirements

— It must be system code and operate
automatically

— It must not involve the programmer
— Operates in Real-time

How Do We Implement Policies?

* At function calls

— Extra-functional code is inserted and wraps the
affected programs

— Functions called are assigned to differing
numbers of processors

Example: Reliability

. “Use sequential-TMR on attitude-control for
the next three hours.” |

X i X i Sequential-TMR(acs)

sensor input x acs;, acs, o
Y1 i Yo i L Mini-checkpoint:
acs .:> not a Iarge, centralized
save(x) checkpoint
y; = acs(x) || y, = acs(x)
actuator output y if y, ==y, then y,

else { y; = acs(retrieve(x))
if y,==y; or y,==y; then y,
else fail }
release(x)

V) 9

Example: Timeliness

» “Get the best estimate you canin 2 ms.”

f,g,and h

compute the \
“‘same”

function but l

take differing g |]

amounts of
h

time f .:> f g h 2ms

10

Example: Power

* “You have 3 watts to do entry.”

let f(x) ={... g(u) ... h(v) ... }
where g(x)={...d'() ... g°() ... }

h(x) = { etc. }

P is the set of processors
allocated by the system to run f
and is instantiated at run-time.

.

P

IP| =4 vs. 1

This might translate
into an assignment
of 4 cores to function
f rather than the
usual 1 core.

11

Not Everything

* Not everything should be done functionally

« Small parts of most programs have some
kind of non-functional behavior that
requires special treatment
— Clock: get_time()

— Database access
— Nested Timeliness policies

12

Can Loops and I/O Be Functional?

The short answer is yes

 Loops
— Aloop is a recurrence relation
» Previous “sum of f(i)” was empty recurrence with empty state
— An old idea: We make the loop state explicit

* Functional I/O has been a long-standing problem

— Unsatisfactory “solutions”: Monads in Haskel; mutable in
Fortress; unique type in Clean

— Different view here

» Afile is a logical data structure
— Alist, array, tree,or other sturcture
— ltis not a sequence of raw, physical records

» Separate logical order from physical position

13

Example: A Simple Loop (1)

The factorial sequence (1126 24 120 ...) is defined by
the recurrence relation

S; =1%s; 4 where sy =1.

int factorial (int n) { Atypical C program to compute
int s= 1; the nt" factorial forn =0, 1, ...
for (i=1; i<n+1l; i++) {

s =1 * s;
}

return s;

}

3/9/11 14

Example: A Simple Loop (2)

As a state-aware functional program

int factorial (int n)

return
initially
int s = 1; —
recur] = 1..n+1 {
next S = J * s

Variable “s” represents a stream of state values s[0], s[1], ...

The computer need keep only the current and the next s[i] at any
time.

The initially section defines s[0]
and the number of slots needed.

} N

finally last s;

An implicit last step:
s[i+1] = next s

— | The finally section says what

to return at loop end — that is, s[n].

15

/0O

— Different view here

« Afile is a logical data structure
— Alist, array, tree,or other sturcture
— It is not a sequence of raw, physical records

« Separate logical order from physical position
— Examples

 Alist of text records ti: the list position i is written along
with the contents as <i, ti>; the order of <i,ti> in the
actual file is not necessarily “in order”.

« HDR for files uses a tree

— Consequence for the programmer

 Look at a file as another name for a variable
— Just as if assigning values to an array

16

Simple Rules Work

* To write programs as functions

— Often only small changes are needed
* Move state changes outside
* Move calls to non-functions outside

— No shared memory

— Don’t create state where it isn’t necessary

 Don’t re-use variable names — each name has
one meaning, one value

17

Summary

* Policy-based computing requires programs to
have extra-functional properties

* The extra-functional properties of interest are
— Start/stop/restart

— Copy/reproduce
— Move and distribute

* These properties are assurred when
programs are functions.

18

References

Dennis and Misunas “A Preliminary. Architecture for a Basic
Data-Flow Processor”. 1975 Sagamore Computer Conference
on. Parallel Processing

Gostelow “The Design of a Fault-Tolerant, Real-Time, Multi-
Core Computer System” IEEE Aerospace Conference, Big
Sky, MT 2011

Milojicic, Douglis, Paindaveine, Wheeler, and Zhou “Process
Migration Survey” ACM Computing Surveys Sept 2000.

Arvind, Gostelow, and Plouffe “Indeterminacy, Monitors, and
Dataflow” Proc 6th ACM Symposium on Operating Systems
Principles

Fortress Programming Language
http://projectfortress.java.net/

19

http://projectfortress.java.net/

	Functional Programming�and�Multi-core
	Slide Number 2
	Examples
	Isn’t Concurrent Programming Hard Enough Already?
	What is a Functional Language?
	Functions
	Requirements on Implementing Policies
	How Do We Implement Policies?
	Example: Reliability
	Example: Timeliness
	Example: Power
	Not Everything
	Can Loops and I/O Be Functional?
	Example: A Simple Loop (1)
	Example: A Simple Loop (2)
	I/O
	Simple Rules Work
	Summary
	References

