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What Multi-core Allows Us To Do

« Concurrency/Parallel Programming
* For speed and reliability

« For general computing
— Not just for special applications

« Policy-based Computing
— Policies change in real-time

— Examples
 Reliability requirements

* Timeliness requirements
— Precision

« Power and other resources
* A new knob to turn for system tradeoffs
— More power > more speed and/or reliability
— Without affecting the other, ongoing computations



Examples

 Produce the best result in this estimation
loop in 2 milliseconds.

« Use sequential-TMR for attitude control for
the next 3 hours.

* You have 3 watts for entry.
* Do this in 2 milliseconds, or quit.

* |f a processor or comm link fails, try again
once.



Isn’t Concurrent Programming Hard Enough
| Already?

* |t need not be hard

* An old idea: Functional Programming

— Every call to a given function produces the same
result

* This ensures
— Concurrency is the default, not sequentiality

— Extra-functional properties

« Automatic parallelization at run-time

— Any two non-dependent sub-expressions can run at the
same time

« Can copy/move/stop and restart any function at any
time



What is a Functional Language?

The relation f: A->B is a function if:
For-all a in A there is a unique b in B such that f(a) = b

« For programming, the consequences of the above are:

— Immutable values
« Can define a value only once (a variable has only one meaning)

» Variables are mathematical variables
— Not memory cells that can be modified/replaced/updated

— No shared memory
— Deterministic
— No side-effects



Functions

The relation f: A->B is a function if:
For-all a in A there is a unique b in B such that f(a) = b

Not a Function
function

extern Ant sum;
int B(int a, int time) {
int A(int a) { for i=0 .. a
sum = get clock(); v[ii] = £(1);
for (int i=0; i<a; i++) return actum(v) + time;
sum += f (i), }
return sum;

}

Canrunin

parallel if f is a
function




Requirements on Implementing Policies

* The policies
— Reliability, Timeliness, and Power

* The requirements

— It must be system code and operate
automatically

— It must not involve the programmer
— Operates in Real-time



How Do We Implement Policies?

* At function calls

— Extra-functional code is inserted and wraps the
affected programs

— Functions called are assigned to differing
numbers of processors



Example: Reliability

. “Use sequential-TMR on attitude-control for
the next three hours.” |

X i X i Sequential-TMR(acs)

sensor input x acs;, acs, o
Y1 i Yo i L Mini-checkpoint:
acs .:> not a Iarge, centralized
save(x) checkpoint
y; = acs(x) || y, = acs(x)
actuator output y if y, ==y, then y,

else { y; = acs(retrieve(x))
if y,==y; or y,==y; then y,
else fail }
release(x)
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Example: Timeliness

» “Get the best estimate you canin 2 ms.”

f,g,and h

compute the \
“‘same”

function but l

take differing g | ]

amounts of
h

time f .:> f g h 2ms
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Example: Power

* “You have 3 watts to do entry.”

let f(x) ={... g(u) ... h(v) ... }
where g(x)={...d'() ... g°() ... }

h(x) = { etc. }

P is the set of processors
allocated by the system to run f
and is instantiated at run-time.

.

P

IP| =4 vs. 1

This might translate
into an assignment
of 4 cores to function
f rather than the
usual 1 core.
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Not Everything

* Not everything should be done functionally

« Small parts of most programs have some
kind of non-functional behavior that
requires special treatment
— Clock: get_time()

— Database access
— Nested Timeliness policies
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Can Loops and I/O Be Functional?

The short answer is yes

 Loops
— Aloop is a recurrence relation
» Previous “sum of f(i)” was empty recurrence with empty state
— An old idea: We make the loop state explicit

* Functional I/O has been a long-standing problem

— Unsatisfactory “solutions”: Monads in Haskel; mutable in
Fortress; unique type in Clean

— Different view here

» Afile is a logical data structure
— Alist, array, tree,or other sturcture
— ltis not a sequence of raw, physical records

» Separate logical order from physical position
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Example: A Simple Loop (1)

The factorial sequence (1126 24 120 ... ) is defined by
the recurrence relation

S; =1%s; 4 where sy =1.

int factorial (int n) { Atypical C program to compute
int s= 1; the nt" factorial forn =0, 1, ...
for (i=1; i<n+1l; i++) {

s =1 * s;
}

return s;

}
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Example: A Simple Loop (2)

As a state-aware functional program

int factorial (int n)

return
initially
int s = 1; —
recur ] = 1..n+1 {
next S = J * s

Variable “s” represents a stream of state values s[0], s[1], ...

The computer need keep only the current and the next s[i] at any
time.

The initially section defines s[0]
and the number of slots needed.

} N

finally last s;

An implicit last step:
s[i+1] = next s

— | The finally section says what

to return at loop end — that is, s[n].
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/0O

— Different view here

« Afile is a logical data structure
— Alist, array, tree,or other sturcture
— It is not a sequence of raw, physical records

« Separate logical order from physical position
— Examples

 Alist of text records ti: the list position i is written along
with the contents as <i, ti>; the order of <i,ti> in the
actual file is not necessarily “in order”.

« HDR for files uses a tree

— Consequence for the programmer

 Look at a file as another name for a variable
— Just as if assigning values to an array
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Simple Rules Work

* To write programs as functions

— Often only small changes are needed
* Move state changes outside
* Move calls to non-functions outside

— No shared memory

— Don’t create state where it isn’t necessary

 Don’t re-use variable names — each name has
one meaning, one value
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Summary

* Policy-based computing requires programs to
have extra-functional properties

* The extra-functional properties of interest are
— Start/stop/restart

— Copy/reproduce
— Move and distribute

* These properties are assurred when
programs are functions.
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