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PLANETARY Rationale for Modeling JPL
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that predict how these otherwise
strong signals are muted/masked
by regolith?




': PLANETARY Chandrayaan-1 and LRO Mini-RF Radars JPL

Chandrayaan-1

Solar Panel (30 deg canted) Data Transmission Antenna

Fuel Tank

Chandrayaan-1 and LRO were in polar
orbits thus enabling the Mini-RF
observations of polar regions.
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LUNAR AND Chandrayaan-1 and LRO

R Mini-RF Radar Parameters JPL

Parameter Chandrayaan-1 | LRO S-Band | LRO X-Band

Frequency 2380 MHz 2380 MHz 7140 MHz

Wavelength 12.6 cm 12.6 cm 42 cm

Pixel Spacing TSm 75and75m | 7.5and 75m

Number of Looks 16 8 and 16 8 and 16

Swath Width § km 4 and 6 km 4 km

Angle of Incidence (Center-Beam) 35° 49° 49°

Antenna Beam-Width (Azimuth) 5° 6° 2°

Antenna Beam-Width (Range) 10° 10° 3.3°

Chandrayaan-1 Mini-RF Operations — October’08 — August’09

LRO Mini-RF Operations July’09 — December’10
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UNARAND Lunar Radar Images at 70 cm JPL
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Opposite-Sense Circular (OC) Same-Sense Circular (SC)

 Echoes are modulated by slope and roughness
» Mare-Terra differences are 2-to-4:1
» Strongest roughness deltas about 10:1
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LUNAR AND
PLANETARY Lunar Surface Panorama Jpl.

Rough, Fresh Surface
Times-10 70-cm Enhancement
Average Lunar Surface Times-3 3.8-cm Enhancement

Apollo - Mare Surveyor-VIl - Tycho Rim

Lunar surface and regolith is a matrix of sand-like soil and rocks
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LUNAR AND Schematic of Lunar Subsurface IPL
(Apollo 17 Preliminary Science Report)

INSTITUTE

Explanation

Rudolph ejecta

. Surficial fines (includes mapping
unit termed “dark mantle”)

Camelot ejecta

22
7/,

W

Ejecta from craters north of diagram

% San Luis Rey ejecta
ﬂ]m]]]]]] Poppy ejecta

Anorthositic fines of middle
interval

- Mixed basalt and breccia fragmental
2’ layers and fine layers of lower
drill-stem interval

Fractured and glassy subfloor

7| Subfloor basalt flows

Figure 7-28. — Block diagram depicting the reconstruction of regolith history in the vicinity of deep drill string (LM area). The
front face is a radial section through Camelot Crater, the drill-stem site, and the LM site; the other faces parallel the standard
lunar surface grid. (Vertical exaggeration is 200x.)

Subsurface crater ejecta layers provide specular scattering
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PLANETARY

INSTITUTE

Average Lunar Radar Behavior
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PLANETARY

LUNAR AND Average Lunar Radar Behavior JpL

Diffuse and Specular Components
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LUNARAND .
PLANETARY Assumed Lunar Ice Conditions JPL

Thick (>100A) ice lens covered Ice patches inside
with thin regolith a radar pixel
REGOLITH
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100 @
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meters)
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LUNARAND North Pole Radar CPR Mosaic —
Chandrayaan-1
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Fresh craters

Anomalous craters
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LUNARAND

PLANETARY Examples of Blocky and Icy Craters AdARPL

Fresh crater
Main L, 14 km diameter, 81.4° N, 22° E

Relative Number of Pixels
=

N
°%0 Giggek -
Anomalous polar crater
On floor of Rozhdestvensky, 9 km diameter, 84,3 N, 157 W N

From Spudis et al.,
Initial results for the
north pole of the Moon

PR from Mini-SAR,

SC

Chandrayaan-1
mission, GRL, 2010.
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LUNAR AND

anemrY  Modeling Results — Rough, Fresh Crater JPL

Euclides - Rough, Fresh Crater —CPR Obs
=—CPR Rough
0.'1 ojz 0:3 0: 0?5 :6 ——CPR Patches
==CPR Thin Reg
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LUNARAND ]
PLANETARY Modeling Results — Icy Crater JPL

Hermite-A - Icy Crater

==CPR Obs
==CPR Rough
0.1 0.2 OT.3 0.4 0.b 0.6
—=CPR Patches
CPR --> ==CPR Thin Regolith
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LUNARAND
PLANETARY

INSTITUTE

S

. Radar view

Double Bounce — Anomalous Crater JPL

Floor-wall image characteristic

»

Direct path
(rim image) ~ Image location

of floor-wall
/ double-bounce

backscatter

Floor-far-wall

double bounce Far-side exterior

Floor

Courtesy of Keith Raney, APL, 2011
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LUNARAND Modeling Results — Anomalous, JPL
Double Bounce Crater

Shackleton Anomalous, Double Bounce —=CPR Obs

==CPR Rough

0.05 on 0.15 0.20 0.25 CPR Patches

CPR --->
===CPR Thin Reg
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LUNARAND -
PLANETARY Modeling Results JdPL

Crater Alpha Gamma Ratio Sum Double ™ Model Fit
Bounce
Fresh Non-Polar
Giordano Bruno 4.20 2.02 2.1 2.27 < Rough Surface
Byrgius A 2.36 1.97 1.2 2.02 << Rough Surface
Euclides - New 1.90 0.93 2.0 1.04 Rough - Patches
Fresh Polar
Main L 2.69 1.26 2.1 1.43 Rough Surface
Other Rozhdestvensky 1.47 1.12 1.3 1.16 Rough Surface
lcy
Floor ofPeary 1 1.10 0.65 1.7 0.70 Thin Regolith
Floor of Peary 2 1.81 0.80 2.3 0.92 Ice Patches
Rozhdestvensky N 1.31 0.79 1.7 0.85 Ice Patches
Floor of Hermite Cut 1 1.30 0.60 2.2 0.68 Thin Regolith
Floor of Hermite Cut 2 1.77 0.70 2.5 0.82 Ice
Hermite A 1.75 0.49 3.6 0.64 Thin Regolith
Erlanger 1.33 0.36 3.7 0.47 > Thin Regolith

Anomalous/ ? Double-Bounce ?

Anomalous 0.84 0.30 2.8 0.36 YES >> All 3
Rozhdestvensky - Floor 0.65 0.39 1.7 0.42 LIKELY >> All 3
Other Rozhdestvensky - Floor 0.88 0.42 2:1 0.47 LIKELY >>All 3
Shackleton 0.78 0.50 1.6 0.53 LIKELY >> All 3

Anomalous Models

No Specular - Diffuse = Ave Diffuse 1.00 0.26 3.8 0.35
SC Diffuse = 0.8 / OC Diffuse = 1.25 0.80 0.33 2.4 0.38
SC Diffuse = 0.8 / OC Diffuse = 1.5 0.80 0.39 2.0 0.44
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LUNARAND

PLANETARY Modeling Results: Alpha vs. Gamma
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Alpha = OC Enhancement / Gamma = SC Enhancement
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Modeling Results: Sum vs. Ratio
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Weighted Sum = 0.12 Alpha + 0.88 Gamma = Total Power Enhancement

Modeling Lunar Radar Scattering from Icy Regoliths



LUNAR AND .
PLANETARY Concluding Remarks JdPL

 We tested our model assuming diffuse and specular scattering
components by examining 13 polar and 3 non-polar craters
using LRO Mini-RF data for the Lunar North Polar Region

* Results indicate that there are 3 separable classes of craters

based upon their SC enhancement (Alpha) and OC enhancement
(Gamma)

—lcy
— Rough Fresh
— Double Bounce (Anomalous)

* Next Step: Produce North and South Polar mosaics using
automated identification of Icy, Rough Fresh and Double
Bounce classes of craters
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