
Applying Model Based Design to
Multicore Flight Software

Jet Propulsion Laboratory
California Institute of Technology

Amalaye Oyake

Jet Propulsion Laboratory
California Institute of Technology

©2010 California Institute of Technology. Government sponsorship acknowledged.

 Writing applications that take advantage of multicore

processors requires an understanding of the multiple
dimensions of the problem domain of the application and
processor characteristics, the features provided by the
operating system and the correct design patterns that can
make best use of the multiprocessing capabilities.

 This presentation looks at some concepts to migrate a flight
software application to a multicore (in this case VxWorks
SMP) environment.

INTRODUCTION

 A driving requirement for JPL will be to preserve its install

base of useful legacy (VxWorks based) software and
migrate these applications to a multicore environment.

 There is a knowledge base of existing technology that is
often ‘reused’ between missions – attitude control,
navigation, proximity and deep space communication etc…

 Further more the increased performance capabilities will
allow JPL to meet the needs of future mission requirements.
Some of these future mission needs - interferometry, (space
and earth based) radar processing, formation flying, video
from space, autonomy, fault protection and spacecraft
communication (middleware), onboard databases,
autonomous responses to processed sensor data and the
like.

GOAL

 For this work we are proposing, the JPL Real Time Control

FSW framework(RTC FSW) ...

 RTC is designed as a modular flight software architecture for
controlling spacecraft with high performance – formation
flying, interferometers, robotic systems.

 The RTC FSW application was written in C++ and runs on
Linux and VxWorks.

 A significant amount of code is automatically generated
from UML statecharts.

 It is designed to support a multiprocessor environment –
real time computers connected via a messaging mechanism
… we want to move to a multicore environment.

 It supports the notion of a software component.

RTC FSW to VxWorks SMP

Page 5

Modular Flight Software Description

SIM RTC Architecture
– Same layered core components
– Same communications

interfaces
– Same synchronized RTI

tasking (but faster)
– State based development with

autocoder
– Same dynamic configuration

system
– Communication

Instrument Control

Function Control

 Algorithms

Device Managers

Transport Interface Drivers

Supervisory

VxW
orks

* Source: Marek Tuszynski

Page 6

Architecture
-

CCDH
SW

Layers
and

Components

 Communication limited to
connected layers

 Encapsulation and data

hiding isolate the
application from a specific
operating system and
device hardware protocol

 Units in layers know only
about layer directly under
them
– Don’t know or care

who calls them
– Only care one layer

down
– May publish status

events
* Source: Marek Tuszynski

7

Example FSW Distributed System

TLM

RBD SBD NVD

ALGORITHM 1 ALGORITHM 2

Dynamically Instantiated Functional Partitions

Computer
1

FPH

CMD

DTA

XEC CFG

TLM

RBD SBD NVD

Dynamically Instantiated Functional Partitions
FPH

CMD

DTA

XEC CFG

TLM

RBD SBD NVD

ALGORITHM 1 ALGORITHM 2

Dynamically Instantiated Functional Partitions
FPH

CMD

DTA

XEC CFG

Instrument
Control

ALGORITHM 2

ALGORITHM 1

Computer
2

Computer
3

SRD

SRD

SRD

* Source: Marek Tuszynski

8

SIM RTC: Core SW: Architecture
• The Core Layer provides a

level of abstraction higher
than the real-time
Operating System.

• The Core Layer provides
common real-time
software capabilities such
as schedule control,
commanding, telemetry
and event reporting.

• The Core Layer provides a
state-based framework for
the development of an
Application specified as a
collection of concurrently
running state-machines.

VxWorks

CMD XEC

TLM

QFSBC

EVR

RTOS Layer

Reusable Core Layer

Application Layer

Layered
architecture
simplifies
modules’
interfaces

* Source: Marek Tuszynski

STAARS

Statechart Framework

• Based on Miro Samek’s
Quantum Framework

• Standard Event
mechanism

• Standard Active Object
model.

STAARS

Autocoding the Statecharts

#ifndef _imc_h
#define _imc_h

#include <iostream>
#include <cstdio>
#include "port.h"

class ImcImpl;

class Imc : public QActive {

 public:
 Imc(char* objName, ImcImpl* implPtr)
 : QActive((QPseudoState)&Imc::initial)
 , objName(objName)
 , impl(implPtr)
 {}

 void Imc::initial(QEvent const* e);
 QSTATE CONTROLLER_IF_ST(QEvent const *e);
 QSTATE GET_MESSAGE_ST(QEvent const *e);
 QSTATE HANDLE_EVENT_ST(QEvent const *e);

 QSTATE Idle(QEvent const *e);

 private:
 string objName;
 ImcImpl* impl;

};
#endif // _imc_h

STATECHART

CODE

Page 11

CCDH SW Physical
Interfaces

INSTRUMENT INSTRUMENT INSTRUMENT INSTRUMENT INSTRUMENT

INSTRUMENT INSTRUMENT

* Source: Marek Tuszynski

 In migrating an application to a real-time SMP multicore

environment, the software developer must understand the
lowest common functional units, the interaction between
these functional units and the datasets that they are
working on.

 Classifying or reclassifying parallel algorithms.

 Identify the needed high-level concurrency design patterns

where optimizations can be applied.

 Modifying the RTC configuration mechanism to support

deploying components amongst cores … computers …

RTC FSW to VxWorks

Amalaye Oyake, January 2007 ... keywords DTN, LTP

BACKUP

 The RTC FSW code was already a multi-process application,

making use of the VxWorks tasks assigned to different rate
groups (1Hz, 10Hz … 5kHz).

 The implementation of the algorithms remained unchanged.

 Implementing task barriers for VxWorks tasks and thread

barriers for threads based algorithms and …

 Implementing standard time (Unix/POSIX/CCSDS
SOIS/IEEE) functions, functions for setting the clock time,
synchronizing clocks, propagating time ...

RTC FSW to VxWorks

 It should be noted that the POSIX Advanced Realtime
Threads section defines the following features:

_POSIX_BARRIERS
_POSIX_SPIN_LOCKS
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER

 The POSIX Realtime threads functions provide the same

functionality, but not all operating systems implement them.

 VxWorks supports a nominal implementation of POSIX but
does not provide the pthread_barrier_wait function.

 As such some of this functionality needed to be written and
tested and implemented.

VxWorks Supported Sync Primitives

 A pure VxWorks API task barrier implementation was

written.

 A Pthreads thread barrier implementation was written for
PORTABILITY – for applications that may want this … this
was not required but I did it anyway.

 Various UTILITY functions were also written (mostly
relating to timing).

Added Sync Primitives to VxWorks

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Modular Flight Software Description
	Architecture �-�CCDH �SW�Layers�and �Components
	Example FSW Distributed System
	SIM RTC: Core SW: Architecture
	Statechart Framework
	Autocoding the Statecharts
	CCDH SW Physical Interfaces
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

