| =

Jet Propulsion Laboratory
California Institute of Technology

Applying Model Based Design to
Multicore Flight Software

Amalaye Oyake

Jet Propulsion Laboratory
California Institute of Technology

©2010 California Institute of Technology. Government sponsorship acknowledged.

INTRODUCTION

B Writing applications that take advantage of multicore
processors requires an understanding of the multiple
dimensions of the problem domain of the application and
processor characteristics, the features provided by the
operating system and the correct design patterns that can
make best use of the multiprocessing capabilities.

B This presentation looks at some concepts to migrate a flight

software application to a multicore (in this case VxWorks
SMP) environment.

GOAL

® A driving requirement for JPL will be to preserve its install
base of useful legacy (VxWorks based) software and
migrate these applications to a multicore environment.

B There is a knowledge base of existing technology that is
often ‘reused’ between missions — attitude control,
navigation, proximity and deep space communication etc...

B Further more the increased performance capabilities will
allow JPL to meet the needs of future mission requirements.
Some of these future mission needs - interferometry, (space
and earth based) radar processing, formation flying, video
from space, autonomy, fault protection and spacecraft
communication (middleware), onboard databases,

autonomous responses to processed sensor data and the
like.

RTC FSW to VxWorks SMP

For this work we are proposing, the JPL Real Time Control
FSW framework(RTC FSW) ...

RTC is designed as a modular flight software architecture for
controlling spacecraft with high performance - formation
flying, interferometers, robotic systems.

The RTC FSW application was written in C++ and runs on
Linux and VxWorks.

A significant amount of code is automatically generated
from UML statecharts.

It is designed to support a multiprocessor environment -
real time computers connected via a messaging mechanism
... we want to move to a multicore environment.

It supports the notion of a software component.

Modular Flight Software Description

SIM RTC Architecture
- Same layered core components

- Same communications
interfaces

- Same synchronized RTI
tasking (but faster)

— State based development with
autocoder

- Same dynamic configuration
system * Source: Marek Tuszynski

— Communication

Instrument Control

Function Control

SHIOMXA

Device Managers

Page 5

Architecture

CCDH
SW
Layers
and
Components

= Communication limited to
connected layers

= Encapsulation and data
hiding isolate the
application from a specific
operating system and
device hardware protocol

= Units in layers know only
about layer directly under
them

- Don’ t know or care
who calls them

— Only care one layer
down

- May publish status
events

* Source: Marek Tuszynski

Operating System

VxWorks OS

Supervisory

Instrument Confro!

Executive
(XEC)

Caonfiguration

Telemetry
Handier (TLM)

Praxy

m

Handler (CFG)

Fault Protection
Handler (FPH)

' Alignment ,
Control

(

Heater
Caontrol

' Filter Wheel " PRC
{ Control Control J

Algorithms

‘ TBD I' TBD ' 1 TBD l

Device

Managers
(MEM j (IBLJSJ [ACF J

FSM

RS-422
Driver

[~ Qs Q= Jm)

Ethemet

Ring Bus Diiver

2he Driver

pPage 6

Example FSW Distributed System

Computer
1

———

Computer
2

———

* Source: Marek Tuszynski Instrument |_ALGORITHM 2 |

Control

SIM RTC: Core SW: Architecture

The Core Layer provides a
level of abstraction higher
than the real-time
Operating System.

The Core Layer provides
common real-time
software capabilities such
as schedule control,
commanding, telemetry
and event reporting.

The Core Layer provides a
state-based framework for
the development of an
Application specified as a
collection of concurrently
running state-machines.

Instrument Control

Function Control

Algorithms

Device Managers

§

SHIOMEA

Transport Interface Drivers

Layered
architecture
simplifies
modules’
interfaces

rzs

Application Layer

rzs

rzs

CMD

Reusable Core Layer SBC

XEC

QF

TLM

EVR

RTOS Layer

VxWorks

* Source: Marek Tuszynski

Statechart Framework

e Based on Miro Samek’s
Quantum Framework

e Standard Event
mechanism

e Standard Active Object
model.

STAARS

Application Events \

—

oS

\\Evjnts /

BvQue

EVT’!tS

BvQue

ol

Events

a7

EvQue

~w\fﬁ?:;)
Guidea

—ia,

GuidefO

Rt

Science

Autocoding the Statecharts

#ifndef imc h
#define imc h

#include <iostream>
#include <cstdio>
#include "port.h"

CONTROLLER_IF
entry / testMessage class ImcImpl;

class Imc : public QActive {

HANDLE_EVENT public:
SEND BT do / handleEvent Imc (char* objName, ImcImpl* implPtr)
QActive ((QPseudoState) &Imc::initial)
GET_MESSAGE , oObjName (objName)
dolgetMessa;e HARENE STATE , impl (implPtr)
SEND_STATE do / handleState (1

void Imc::initial (QEvent const* e);
QSTATE CONTROLLER IF ST (QEvent const *e);
QSTATE GET MESSAGE ST (QEvent const *e);
QSTATE HANDLE EVENT ST (QEvent const *e);

SEND_REPORT HANDLE_REPORT
do /handleReport

QSTATE Idle (QEvent const *e);

STATECHART

string objName;
ImcImpl* impl;

i
#endif // imc h

CODE

STAARS

Software Control Physical Interfaces

GSE a Eihemet ———) . ’
'_']' o %
Realtime (Linux) BTBRAID Analysis workstation (Win XP) =
WFSC (Linux)
= F
switch RS-232 RS-212
User IR{(Linux) Ring Bus Monitor
ethemet ethemet
switch
ethemet
Power PC ' ZH~ Power PC T Power PC
HSI HSI
| B T |
S |
- ,/’#//{’7 ﬁhg““\\\
_ rm—— / L _______ | i J
l INSTRUMENT i l—2 Ring Bus 4—. . INSTRUMENT

| INSTRUMENT.

/ — -"‘TI/K\“
/ / ' 2, ‘4\\..

- ey o e R
tl__J? e e ——— . (B[. R
' INSTRUMENT i INSTRUMENT INSTRUMENT INSTRUMENT ' INSTRUMENT

SRR - e | [e]

* Source: Marek Tuszynski mmm- Ring Bus Interface (RBI)

pPage 11

RTC FSW to VxWorks

In migrating an application to a real-time SMP multicore
environment, the software developer must understand the
lowest common functional units, the interaction between
these functional units and the datasets that they are
working on.

Classifying or reclassifying parallel algorithms.

Identify the needed high-level concurrency design patterns
where optimizations can be applied.

Modifying the RTC configuration mechanism to support
deploying components amongst cores ... computers ...

BACKUP

Amalaye Oyake, January 2007 ... keywords DTN, LTP

RTC FSW to VxWorks

The RTC FSW code was already a multi-process application,
making use of the VxWorks tasks assigned to different rate
groups (1Hz, 10Hz ... 5kHz2).

The implementation of the algorithms remained unchanged.

Implementing task barriers for VxWorks tasks and thread
barriers for threads based algorithms and ...

Implementing standard time (Unix/POSIX/CCSDS
SOIS/IEEE) functions, functions for setting the clock time,
synchronizing clocks, propagating time ...

VxWorks Supported Sync Primitives

It should be noted that the POSIX Advanced Realtime
Threads section defines the following features:
_POSIX_BARRIERS
_POSIX_SPIN_LOCKS
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_SPORADIC_SERVER

The POSIX Realtime threads functions provide the same
functionality, but not all operating systems implement them.

VxWorks supports a nominal implementation of POSIX but
does not provide the pthread_barrier_wait function.

As such some of this functionality needed to be written and
tested and implemented.

Added Sync Primitives to VxWorks

® A pure VxWorks API task barrier implementation was
written.

H A Pthreads thread barrier implementation was written for

PORTABILITY - for applications that may want this ... this
was not required but I did it anyway.

B Various UTILITY functions were also written (mostly
relating to timing).

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Modular Flight Software Description
	Architecture �-�CCDH �SW�Layers�and �Components
	Example FSW Distributed System
	SIM RTC: Core SW: Architecture
	Statechart Framework
	Autocoding the Statecharts
	CCDH SW Physical Interfaces
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

