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Introduction

What is an occulter?

An occulter or starshade is an optical element which is placed in front of the

telescope to block most of the light from a star before it reaches the optics inside,
without blocking the planet.

In our case, we use two spacecraft flying in formation:
o First has its edge shaped to cancel the starlight
@ Second is the telescope which images the star and planet
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Nondimensionalization

Optimization for occulter design

We design these occulters by optimizing the function A(r), which determines edge
shape, to minimize electric field amplitude:

iz R i 2 2
Eoce(p) = Eoe™™" (1 _ 2 A(r)do <27rrp) eXe (e )rdr>

ixz Jo Az
This minimization is done for points across the plane of the telescope aperture
0 < p < Pmax
and across a range of wavelengths
Amin €A < Amax
and generally includes additional constraints, such as a solid central region for the

spacecraft bus:
Alr)=1 V 0<r<a (1)
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Scaling properties of the system

Making an occulter work at two distances doesn’t require any changes to shape.

z— zc A= Ac
iz 27 R 27I'I’p i 2, 2
E =FeX ([1-2= [ A F(rP+0)
occ(p) o€ * ( Nz o (r)JO < 2 ) e I’dl’)
U
Euce () = 0™ (1= 25 [ Ao (22 ) e5407) g
occ’\P) = o€ ixz Jg o\ ")z €

Result: same electric field, within a constant phase factor; band goes from
[)\[_,)\H] to [)\[_/C,)\H/C].

Other scaling properties (r — r/c,p — p/c,z — z/c?) used to reduce systems to
laboratory scale.
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Nondimensionalization

Spanning the parameter space (1)

The fact the same occulter works at two distances hints that not all of the input
parameters to the optimization are independent. We can do a change of variables
and rewrite the propagation integral in terms of independent nondimensional

parameters:

r

'=_0<r <1

r R7 _r =

pP=Llo<p<1
pmax
R2 P2

Ny = —, N, = Dmax

°T Nzt Az

A(r') = A(r)

1
Eoec(p') = 1+ 2il, /O A(F)Jo (QW\/NDNtr’p’) i (Nor®+Nep™) 11401
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Spanning the parameter space (I1)

Parameter | Definition | Description
2 .

Ny — maximum-wavelength occulter Fresnel number
R ..

N, AR - minimum-wavelength occulter Fresnel number
win

N3 Lmax maximum-wavelength shadow Fresnel number
max

Ny B ratio of central disk radius to full radius

We can define four independent parameters to bound N, and N; for broadband
optimization

N1 < No < N, (2)
N3,

Ny < N, < 312 (3)

A(r'y=1for0 < r' < N, (4)

0<p <1 (5)

and let us examine the parameter space of possible optimized occulters.
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Spanning the parameter space (I1l)

We create a 4D grid in the four variables and
run an optimization at each grid point,
giving the worst-case suppression level for
each (N, No, N3, Ny) at any point in the
occulter shadow and any wavelengths in the
occulter bandpass.

Our grid consists of 27000 points, with the
values of Nj through N, given at left.

Such a grid can be mined for information
about the performance and limitations of
occulters under various requirements.

[ M Vo [ [ M Ny |
[ 26 pts 12 pts. | | 9pts. 10 pts. |
75 15.0 0.1 0.250
8.0 175 0.15 0.306
8.5 20.0 0.2 0.361
9.0 225 0.25 0.417
95 25.0 03 0.472
10.0 275 0.35 0.527
10.5 30.0 0.4 0.583
11.0 325 0.45 0.638
115 35.0 05 0.694
12.0 375 - 0.750
125 40.0 - -
13.0 425 - -
135 - - -
14.0 - - -
145 - - -
15.0 - - -
155 - - -
16.0 - - -
16.5 - - -
17.0 - - -
175 - - -
18.0 - - -
185 - - -
19.0 - - -
19.5 - - -
20.0 - - -
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Existing designs

This grid covers the parameter space of existing optimized designs:

| Ny N> N3 Ny

Lower grid bound 7.5 150 0.10 0.25

Upper grid bound 20.0 425 050 0.75

THEIA (Kasdin et al. 2009) 10.39 29.09 0.23 0.50

1.1m O3 (Kasdin et al. 2010) 9.92 21.82 0.10 0.52

1.5m O3 variant (Shaklan et al. 2011) 1269 27.92 0.20 0.63
New Worlds Probe (Soummer et al. 2010) | 8.48 21.21 0.10 0.26

Additional constraints (for tip size, red leak, etc.) may cause their performance to differ
slightly from subsequent plots.
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Occulter diameter vs. bandpass

Occulter diameter (m) for 10710 starlight suppression Occulter diameter (m) for 10710 starlight suppression
adow diameter: 6m, IWA: 76mas. Shadow diameter: 6m, WA: S0mas
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Occulter diameter vs. bandpass, fixed 10m petals
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Bandpass versus inner working angle

Occulter geometric IWA (mas) for 10719 starlight suppression Occulter geometric IWA (mas) for 10719 starlight suppression
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Results

IWA vs. occulter diameter and petal length

Occulter diameter (m) for 1010 starlight suppression
Shadow diameter. 6m, lower wavelength 250nm, upper wavelength 700nm
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Summary

Nondimensionalization of propagation integrals provides a way to manageably
investigate the limits of optimized occulter performance. The gathered data
provides a framework for looking at design sensitivities and performing trade
studies for occulter missions.

The data shown is representative but not exhaustive; if there's a particular slice of
data you'd like to see, please feel free to contact me.

Thank you for your attention; I'd be happy to take any questions.

Cady and Shaklan (JPL) Nondimensional... August 24, 2011 13 /13



Additional slides

Additional slides
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LCENLERSI N Design with optimization

Why not a disk for planets?

Problem with a simple disk: while geometric optics predicts complete suppression,
wave optics predicts diffraction around the edges.

© On-axis, creates Poisson’s spot in the center of the shadow, where the
intensity is not attenuated at all

@ Off-axis, full diffraction calculation shows we can only suppress the starlight
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LECHENEIRSIEIC  Design with optimization

Designing an occulter (1)

Following (Vanderbei, Cady, and Kasdin 2007), we start by thinking about Fresnel

propagation from a plane wave incident on an apodized aperture with circular
symmetry :

If the apodization is given by a function A(r), then after a distance z, the electric

field is:
; or (R . 2rr
E.p(p) = Boe™ <—i>\z/0 e X (P40 4 ( )\zp> A(r)rdr)
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Desgn vith izt
Designing an occulter (I1)

An apodized occulter is the complement of this aperture:

n:>

We can write the equation for this using Babinet's Principle:

; 20 (R a2 2mrp
Eoce(p) = Ege™ [ 1 — =— R ()
(p) e ( nz , ex Jo e A(r)rdr

= Eoe™ — Eap(p)
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Design vithopimization
Designing an occulter (111)

Can’t build an apodized occulter from real materials, so we convert it to a binary

occulter with N petals:

o »

Choose petal width so electric field mostly unchanged for small p:

1 o= A (—1) .

E, in\F» = Eocc — E ika — N(op — 2
bin(p, ) (p) — Eoe JZ:; - cos[iN(¢ — 7/2)]
R i(,2, 2 i /

y / () <2wp> sin G7A(r)
0 Az Jm
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Additional slides Design with optimization

Designing an occulter (1V)

How do we choose the width of the petals?

@ For profile A(r), we design the petals so that a circle of radius r has a
fraction of the circle equal to A(r) blocked by a petal

@ We repeat the petals NV times to place the scattered light outside the aperture

Fraction of circle of radius Ry covered by petals
o
&
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Design with optimization
Designing an occulter (V)
Lastly, need to choose A(r) and N. We choose A(r) by setting up a linear

optimization on the real and imaginary parts of E,.. (Vanderbei et al. 2007, Cady
et al. 2008) to constrain the intensity at the telescope pupil:

: o [R . 2
Evec(pi \) = Epe™ (1 _ ST R ( ”p> A(r)rdr)

ixz Jo Az

@ Strict bounding should be Re(E,cc(p; A))? + Im(Epec(p; A))? < ¢, with ¢ an
upper bound on the intensity; these are quadratic constraints on A(r)

@ Bounding the real and imaginary parts independently introduces some slightly
conservative assumptions, but assures the optimization remains linear.

@ Linear optimizations have globally optimal solutions, so we get good
apodization profiles with each run of the optimization rather than getting
caught in local minima.

@ Even better, we can use c¢ as a variable and put it in the cost function, so we
minimize the upper bound on the intensity.
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LCENLERSI N Design with optimization

Designing an occulter (VI)

We also add some constraints to ensure center of the occulter is solid (to ensure

there is a place for the spacecraft bus) and the petal edges are smooth (as the

optimization will tend to produce spiky bang-bang solutions otherwise). Can

tweak further if desired.
The full problem:

Minimize :

subject to :

C

Re(Eoce(piN) — ¢/V/(2) <0
- Re(Eocc piA)—c/V/(2) <0
Im(Eocc(p; A)) — C/\/2 <0
- Im(EocC piA) —c/V(2) <0
V' p < Pmax; )\ € [)‘minv maX]

Alr)=1 V 0<r<a
A(r)<0, |A(r)]<o V 0<r<R

Lastly, we choose N so |Epin — Eoce| <€ ¢ for p < pmax.
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Design with opimization
Optimized shadow

Result: a dark shadow at the telescope aperture.

THEIA, 500nm, intensity at pupil plane
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