
Highly Reliable Counters in FPGAs

MAPLD 2011
Dr Gary R Burke

Jet Propulsion Laboratory
California Institute of Technology

Reliable State Machines

Several methods exist to increase reliability of State
Machines beyond TMR
• No undefined states
• Sparse state decoding

– Hamming distance of 2
• One hot
• H2

• Self Correcting
– H3
– EDAC on state

MAPLD 2011 Highly Reliable Counters in FPGAs 2

Counters in State machines

• Counters are often used with State machines
– Insert delay between states

• Large values inefficient to encode into additional states
• Delay will be eg 1000 clock cycles

– Slow down State Machine
• User Interface may need speed of 10Hz
• Which is a 23-bit counter on 50Mhz clock

– Repeat count for State machine
• Sequence repeats a defined number of time
• More efficient than stretching State machine out.

MAPLD 2011 Highly Reliable Counters in FPGAs 3

Counters are Vulnerable

• A Reliable State machine needs a Reliable
Counter

• Most efficient Counter is Binary , that is each
state is 1 more than previous state.

• The Binary Counter is vulnerable to SEUs
• Although this can be protected using SEU

tolerant Flip/flops (eg TMR flip/flops) there is
still some vulnerability

MAPLD 2011 Highly Reliable Counters in FPGAs 4

Counters are Weak Link

• If the delay between states is incorrect , the
FSM will shorten or lengthen the time in a
critical state

• A bad Clock Counter can cause the State
machine to skip to the next step far too early
or late

• A bad repeat count could cause FSM
premature completion or case FSM to
continue to cycle

MAPLD 2011 Highly Reliable Counters in FPGAs 5

Weak Link example

• A state machine turns on pulse to fire Pyro
• The length of the pulse is exactly 14.2 ms
• This length is determined by a counter

counting 33Mhz clocks (468600)
• This requires a 19 bit counter
• A SEU on the most significant bit can reduce

this count to 206456 ie 6.26 ms
• This can cause partial fire of the pyro

MAPLD 2011 Highly Reliable Counters in FPGAs 6

How to fix counters

• Simple solution needed
• Not to add too many f/f s, which become SEU

targets
• Assume detection only is needed.
• Assume that only 1 SEU is encountered in

entire count sequence.
• Need a way to validate final count value
• If its bad then FSM/system can compensate

MAPLD 2011 Highly Reliable Counters in FPGAs 7

Possible solutions
• TMR flip/flops

– Best choice but some vulnerability remains
• Duplicate counter

– Large overhead
– Twice as likely to get SEU
+ Simple logic
+ Works for multiple errors

• Parity
– May not detect change if checked at end of count

• Monotonicity check
+ Simple logic
+ low overhead

MAPLD 2011 Highly Reliable Counters in FPGAs 8

Monotonicity check

• Check that no count values were skipped
• Reached expected count in correct way
• Guarantees count value is good

– (With previous assumptions)

• Simple implementation
– Small auxiliary counter
– or Extra states in FSM
– or Software check

MAPLD 2011 Highly Reliable Counters in FPGAs 9

Auxiliary Counter

• Main counter counts in binary , every clock or
under some condition

• Auxiliary counter counts in same way , but is
much smaller

• For any size main counter , auxiliary counter is
only 2 bits ! (single SEU only)

MAPLD 2011 Highly Reliable Counters in FPGAs 10

Why 2 bits?

• Assuming only 1 bit is changed in main
counter

• Value of change is +/- 2^i
– Where i is binary bit position

• Auxiliary counter constrained to count from 0
to 2 (and back to 0)
– 3 states only

• The expected value of this count at the
desired final count value is known (0,1 or 2)

MAPLD 2011 Highly Reliable Counters in FPGAs 11

Why it works

• Value of potential error is +/- 2^i (i=0->N-1)
• This is never a multiple of 3

– It is always even except for i=0, which is always +/-
1;

• An error will be detected by having an
incorrect auxiliary counter value at the
expected main count value.

• Note this is independent of the size of the
main count.

 MAPLD 2011 Highly Reliable Counters in FPGAs 12

FSM implementation

• it is possible to eliminate the aux counter
• Include 3 states in a loop
• Cycle through these states under the same

conditions as the main counter
• At each state check counter has reached

desired value
• To be correct the count must be in the correct

value, and the FSM in the correct state.

MAPLD 2011 Highly Reliable Counters in FPGAs 13

Aux counter errors

MAPLD 2011 Highly Reliable Counters in FPGAs 14

o

1

2

3

+1

+2

+2

+2

+1

+2

Fig.1 Aux Counter State Transition
Graph

+0

+1

A sequence of 0,1,2 can be used. In this case a
corruption of 1 bit moves the count forward by 1 or 2.
This maintains the incorrect state until the end of the
count. To achieve this the illegal state (3) should
cause a transition to state 1. This is shown in Figure 1.
The solid lines are the legal transitions. The dotted
lines are the possible transitions due to an SEU. The
numbers on the lines represent the increment to the
aux counter as a result of these transitions. The red
line and text represents what would happen if the
illegal 3 state were to transition to a 0 state. Note that
in this case a state of 2 could be changed to 3 , and
then back to 0, with a net counter increment of 0. This
would then be undetected.

multiple errors

• It is possible to tweak this to detect multiple
errors , although it becomes less efficient

• If the number of detected errors is E, then for E>1
the size of the aux counter of a function of N , the
number of bits in the main counter

• The size of the aux counter depends on the value
of X , where X is the number is the number of
states in the aux counter
– Eg for E = 1 then X = 3
– For E>1 then X = f(N)

MAPLD 2011 Highly Reliable Counters in FPGAs 15

maths

• The value V of the errors depends on both E and
N

• V = ∑ an * 2^ n
• And V != mod (X)
• Elegant solution to this has not been found.
• X is always prime
• Derive the various values of X from a computer

program , which tests all possible error values

MAPLD 2011 Highly Reliable Counters in FPGAs 16

Table of aux counter states

Counter Bits E=1 E=2 E=3 E=4
8 3 19 83 173
9 3 19 83 173

10 3 23 89 307
11 3 23 89 359
12 3 29 139 557
13 3 29 233 653

MAPLD 2011 Highly Reliable Counters in FPGAs 17

Conclusions

• Protecting a counter against a single error is
feasible with very little overhead , using an
aux counter.

• Detecting double errors is also possible ,
although the size of the aux counter depends
on the main counter size

• To detect more than 2 errors on large counters
is possible but not competitive with other
methods.

MAPLD 2011 Highly Reliable Counters in FPGAs 18

	Highly Reliable Counters in FPGAs��MAPLD 2011
	Reliable State Machines
	Counters in State machines
	Counters are Vulnerable
	Counters are Weak Link
	Weak Link example
	How to fix counters
	Possible solutions
	Monotonicity check
	Auxiliary Counter
	Why 2 bits?
	Why it works
	FSM implementation
	Aux counter errors
	multiple errors
	maths
	Table of aux counter states
	Conclusions

