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Cassini Spacecraft 

• RTGs produced 880W of power at launch in 1997.    Today:  665 W 
• Spacecraft Mass at Launch:  5600 kg.  Today:  2325 kg 

– Bi-Propellant Load at Launch:  3000 kg.  Today:  142 kg (5%) 
– Hydrazine Load at Launch:  132 kg.   Today:  62 kg (47%) 
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Magnetometer Boom: 11 meters long 

Radio and Plasma Wave Antennas (1 of 3) 
10 meters long (each) 

Radioisotope Thermal Generator (1 of 3) 



August 10, 2011 2011 AIAA GNC Conference and Exhibit 

Cassini-Huygens 

4 



August 10, 2011 2011 AIAA GNC Conference and Exhibit 

Cassini-Huygens 

Attitude Estimator Design (Extended Kalman-Bucy Filter) 

• Attitude Determination modes: 
– Nominal mode: Combine data from Stellar Reference Unit (SRU) and 

Inertial Reference Units (IRU) 
• Stellar Reference Unit (SRU, Prime and B/U): Stellar reference via: 

– Five stars captured by star tracker, provides 3-axis attitude knowledge 
– An on-board star catalog 
– Star IDentification (SID) algorithm 

 

• Inertial Reference Unit (Prime and B/U): Propagate attitude knowledge from star 
update to update 

– Hemispheric Resonator Gyroscopes 
– Each IRU contains four gyros 
– Prime IRU used continuously since launch 
  

– SID Suspend mode: During Tour, Saturn, rings, etc. might fall inside 
     the star tracker’s field-of-view 

• They will confuse the SID algorithm 
• SID must be suspended 
• Attitude knowledge is propagated  
 by gyros alone   

• +h 

• +v 

• h=0  
• v=0 
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Cassini Attitude Control Systems 
• Reaction Control System (RCS) [Hydrazine Thrusters] 

– Eight Prime Thrusters / Eight Backup Thrusters 
• In March, 2009, ground controllers swapped 

the prime thruster branch 
– Blow-down (0.97 N at launch, currently 0.7 N) 
– Control system: Bang-off-Bang  

• Commandable deadbands (0.5 to 20 mrad each axis) 
– Functions: 

• Small ∆V burns (0.01 m/s to 0.3 m/s) 
• RWA Momentum Biasing 
• Low-altitude Titan flybys (atmospheric torque) 
• Slews at higher rates/accels than RWA can perform 

• Reaction Wheel Assembly (RWA): 
– Three prime RWAs and an articulatable RWA-4 

• In July, 2003, ground controllers brought RWA-4  
On-line to replace RWA-3 in the “prime set” 

– RWAs are used to achieve small attitude control  
      error and good pointing stability 

• Slew rates from very small to several mrad/s 
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Critical Events Successfully Completed 
• Launch (October 15, 1997) 

– Titan-4B/Centaur: Peak tip-off rate was ≈ 0.75 °/s 
 

• Saturn Orbit Insertion (June 30, 2004) 
– This was a 96 min main engine-based burn 
– It lowered the Saturn-relative S/C velocity by 626.2 m/s, and allowed the 

spacecraft to be captured by Saturn gravity field 
 

• Release of Huygens Probe (December 24, 2004) 
– Probe was released at a pre-determined inertial attitude and spinning 

• Peak Cassini post-release tumble rate was ≈ 0.95 °/s 
• Thrusters detumbled S/C and slewed it to an Earth-pointed attitude in <16 min. 

 

• Probe Relay Tracking at Titan (January 14, 2005) 
– Science data was collected during the Probe descent for 2 h 27 m plus 

another 1 h 12 m while the Probe was on Titan’s surface 
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Cassini Mission at Saturn 
 

• July 2004 through June 2008 – Nominal mission completed 
– 73 orbits of Saturn completed 

 
 
 

• July 2008 through Sept 2010 – Equinox Extended Mission (XM) 
– 65 additional orbits of Saturn completed 

 
 
 

• Oct 2010 through Sept 2017 – Solstice Extended-Extended Mission (XXM) 
– 155 additional orbits of Saturn planned 
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Proximal Trajectory April-Sept 2017 
• 22 orbits with each periapsis inside 

Rings 
– Orbital Period 6.5 Days 

• Ballistic Entry Into Saturn 
      September 15, 2017 
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Cassini Orbit Trim Maneuvers 
 at Saturn 

An Overview 

Thomas Burk 

Jet Propulsion Laboratory, California Institute of Technology 
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3 Orbit Trim Maneuvers Per Encounter 
 

 
 
 

 
 
 
 

Approach Maneuver 

Cleanup Maneuver 

Targeting 
Maneuver 

Titan 
(outbound encounter) 

∆V 

∆V 

∆V 

•24 
hours 

ΔV > 0.3 m/s, use Main Engine 
  ΔV < 0.3 m/s, use RCS Thrusters 
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ME Burns – Thrust and Control 

• The main engine provides between 400 
N and 450 N of thrust (function of tank 
pressure) 

• Two linear engine gimbal actuators 
(called “P” and “Q”) provide 2-axis 
control during the ME burn and the third 
axis (roll about the thrust vector) is 
controlled by the Y-facing RCS 
thrusters  

• The main engine is physically mounted 
about 24 cm away from the Z-axis 
spacecraft “centerline” (in the +Y-axis 
direction).   

• The effective “thrust vector” during ME 
burns makes an angle of about 7 
degrees with the -Z-axis. 
 

•ME-A (Prime) •ME-B (Backup) 
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Execution Error Has Magnitude and Pointing Components 
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2009 to Date 

Main Engine Execution Error Has Improved Since Launch 
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122 Main Engine Maneuvers at Saturn to Date 
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ME Pointing Error Versus Burn Magnitude 
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ME Pointing Error Percent Versus Burn Magnitude 
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• The Main Engine Pre-Aim Vector is the best estimate of the 
thrust vector during the burn, expressed in body-frame 
coordinates 
 

• The commanded burn attitude aligns the Pre-Aim Vector 
with the desired ΔV direction 

 
• A good Pre-Aim Vector estimate minimizes the pointing 

disturbance after ignition 
– The thrust vector controller essentially points the engine in 

the direction of the center-of-mass 
 

• An error in the Pre-Aim Vector direction will lead to bigger 
pointing execution error and bigger ignition transients 

Main Engine Pointing Error and Pre-Aim Vector 
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• Thrust vector telemetry is used to determine the Pre-Aim 
Vector direction for the next burn 
 

• The oscillatory nature of the thrust vector requires that care 
be taken in constructing the Pre-Aim Vector for next burn 

 
• The strategy used is to find the average of the thrust vector 

telemetry over an entire oscillation period of about 20-25 
seconds 
– If the previous burn is at least this long, select the period 

nearest the end of the burn 
– If the previous burn is short (1-20 seconds), do not update the 

Pre-Aim Vector 

Estimating the Pre-Aim Vector 
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Estimating Pre-Aim Vector from Thrust Vector Telemetry 

X-component of Pre-Aim Vector for next burn 
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Trend in Pre-Aim is Offset from Gimbal-to-CM 

Before Release of Huygens Probe 
After Release of Huygens Probe 

History of Pre-Aim Vector 

History of Vector from Engine-Gimbal to Center-of-Mass Estimate 



August 10, 2011 2011 AIAA GNC Conference and Exhibit 

Cassini-Huygens 

24 

Accumulated Pointing Change 
 in Gimbal to Center-of-Mass Since 2005 
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Percentage of Usable Bi-Propellant Remaining 
Since 2005 
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Attitude Control Performance Has Been Excellent 
• Main Engine Execution Error has improved during the 

mission 
– Accelerometer scale factor adjustments have helped 
– Pre-Aim Vector estimation using telemetry and 

center-of-mass trending is important 
• All Main Engine Burns have used hardware 

Accelerometer for ΔV estimation 
– Keeps magnitude execution error small 

• Future Main Engine burns will be smaller, on average 
– Pre-Aim Vector updates keep ignition transients small 
– Some Pre-Aim Vector updates may be made based on 

center-of-mass prediction 
– Thrust vector telemetry will continue to be the primary 

method of Pre-Aim Vector update 
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