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Abstract  
As NASA moves toward expanded commercial 

spaceflight within its human exploration capability, 
there is increased emphasis on how to allocate 
responsibilities between government and commercial 
organizations to achieve coordinated program 
objectives. The practice of program-level functional 
analysis offers an opportunity for improved 
understanding of collaborative functions among 
heterogeneous partners.  Functional analysis is 
contrasted with the physical analysis more commonly 
done at the program level, and is shown to provide 
theoretical performance, risk, and safety advantages 
beneficial to a government-commercial partnership.  
Performance advantages include faster convergence 
to acceptable system solutions; discovery of superior 
solutions with higher commonality, greater simplicity 
and greater parallelism by substituting functional for 
physical redundancy to achieve robustness and safety 
goals; and greater organizational cohesion around 
program objectives. Risk advantages include 
avoidance of rework by revelation of some kinds of 
architectural and contractual mismatches before 
systems are specified, designed, constructed, or 
integrated; avoidance of cost and schedule growth by 
more complete and precise specifications of cost and 
schedule estimates; and higher likelihood of 
successful integration on the first try.  Safety 
advantages include effective delineation of must-
work and must-not-work functions for integrated 
hazard analysis, the ability to formally demonstrate 
completeness of safety analyses, and provably correct 
logic for certification of flight readiness. The key 
mechanism for realizing these benefits is the 
development of an inter-functional architecture at the 
program level, which reveals relationships between 
top-level system requirements that would otherwise 
be invisible using only a physical architecture. This 
paper describes the advantages and pitfalls of 
functional analysis as a means of coordinating the 
actions of large heterogeneous organizations for 
space exploration programs. 

I. Introduction 
After the termination of the Constellation program 
(CxP) and subsequent to the retirement of the Space 
Shuttle program (SSP), the United States intends to 
move in a new direction characterized by increasing 
commercial interaction and participation in space 
exploration with the goal of sustained human 
presence in low Earth orbit (LEO) and beyond. 
NASA’s Exploration Systems Mission Directorate 
(ESMD) is tasked with developing the systems and 
capabilities required to enable affordable commercial 
crew access to the International Space Station (ISS) 
and to launch crewed vehicles for missions beyond 
LEO. The primary aim of increased commercial 
spaceflight to LEO will be the development and 
operation of vehicles that could become the nation’s 
primary means of ISS crew transportation thus 
reducing America’s reliance on foreign systems [1]. 
This new direction to achieve affordable space 
exploration capabilities mandates the need to perform 
systems integration correctly, particularly among 
government and commercial entities that are 
heterogeneous by nature with sometimes competing 
goals. In its initial planning, ESMD has already 
identified three major risks for commercial crew 
capabilities (see Table 1, first three rows): failure of a 
commercial partner, uncertainty regarding emerging 
commercial market demand and requirements unique 
to NASA [1].  

The purpose of this paper is to argue the need 
for establishing functional architectures as a means of 
weaving and integrating the goals and requirements 
of public-private space exploration partnerships. 
Functional analysis, as expressed in this paper, can be 
seen as a critical mitigation approach for the risk of 
NASA-unique requirements (see Table 1, row three) 
and for the risk of inadequate program integration of 
government and commercial crew (see Table 1, row 
four). 



Table 1. NASA Programmatic Risks Concerning 
Commercial Crew 

Risk Title Risk Statement 
Failure of a 
Commercial Partner 

Commercial partners may not be able to 
complete the demonstration phase and thus 
NASA’s investment would not result in 
available commercial services. 
 

Uncertainty 
Regarding Emerging 
Commercial Market 
Demand 

With a minimum of only two flights per year 
from NASA and an uncertain non-NASA 
market, potential providers may be wary of the 
commercial business potential. 
 

Requirements 
Unique to NASA 

NASA-unique requirements will increase the 
cost to provide services such that the 
commercial providers may not be able to 
capture non-NASA markets. 
 

Inadequate Program 
Integration of 
Government and 
Commercial Crew 
Products 

Program management may not integrate 
divergent government and commercial interests 
resulting in increased costs, inefficiencies 
and/or program termination.  

 

II. Background 

A. Managing the Interfaces, Interactions and 
Influences via Effective System Integration 
 

System integration, in general, involves 
managing the interfaces, interactions and influences 
of the players and components of a system in order to 
achieve the end product or mission. Integration 
management, in the context of large scale systems, is 
an arduous and time-consuming process, particularly 
between heterogeneous stakeholders with divergent 
agendas. We assert that both good program 
management and effective system integration are 
fundamentally necessary to achieve commercial crew 
exploration goals within funding and timing 
constraints. This point is often overlooked because 
many managers looking to save costs believe that 
physically independent or (physically) loosely 
coupled systems do not require system integration 
effort. The purpose of good program management is 
to direct the program toward program success. The 
purpose of effective system integration is the success 
of the end product. Broadly speaking, system 
integration is the process of bringing together the 
component subsystems into one system and ensuring 
that the subsystems function together as a 
coordinated whole. Simply stated, system integration 

is more than system assembly. A foundational tool in 
the system integration arsenal is functional analysis 
which can be used at both the programmatic system 
level and the lower project subsystem levels. In this 
paper, we will use the term “system” to refer to the 
coordinated product at the program level and the term 
“subsystem” to refer to project-level products.  
Depending on the scope of the project, its subsystem 
can be very large and can be sub-divided into 
multiple lower-level subsystems. As a high level risk 
mitigation tool, the authors intend to focus primarily 
on the programmatic benefits of functional analysis. 

B.  What is Functional Analysis? 
 

The goal of the systems design process is to 
transform explicit and latent requirements into a 
coherent description of system functions that can be 
used to guide a design (Figure 1). In this endeavor it 
is very common to decompose a system into smaller 
pieces that can be more easily understood.  Those 
smaller pieces are divisions of the system using a 
separation criterion: typically spatial1 in the case of 
hardware or facilities, administrative in the case of 
organizations, or in the case of software some other 
criterion such as boundaries of configuration items.  
From this division arises the concept of interfaces, 
regions of interaction between the decomposed 
pieces.   

In principle there are as many possible 
separation criteria as there are distinctions within 
human thought.  We will concentrate here on just two 
commonly used criteria:  spatial and functional.  
Choosing to decompose a system spatially leads to 
one particular kind of system architecture, while 
choosing to decompose a system functionally leads to 
another, as sketched in Figure 2.   Each of these 
potential decompositions is both useful, and by itself, 
inadequate.  The spatial decomposition has the ability 
to reveal spatial relationships, and is convenient for 
organizing characteristics that have a clear 
relationship to spatial boundaries such as mass, 
temperature, or energy flow.  The functional 
decomposition reveals functional relationships, and is 

                                                      
1Footnote 1 The term “physical” is a common substitution for 
“spatial”, though strictly speaking there are other physical 
distinctions that might be used as criteria for decomposition such 
as time, density, temperature, etc. 



 
Figure 1. Overview of System Design Process [2] 
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Figure 2. Two Decompositions of the Same Space Transportation System 

convenient for organizing characteristics that have a 
clear relationship to functional boundaries such as 
computational loading, response time, or data 
volume.  However, neither decomposition type can 
reveal the relationships accessible using the other.  
To the extent that success of a system depends on 
management of spatial and functional characteristics 
at the same time, both decompositions are necessary. 
Functional analysis, then, is a systematic process of, 
decomposing, describing and relating the functions a 
system must perform in order to achieve end product 
success. It is important to note that functional 

analysis at the top program-level probably should not 
address how these functions will be performed. This 
is because large scale systems generally have 
multiple levels of planning, coordination and 
implementation. The program level utilizes 
requirements to determine what it wants. These 
requirements describe the “what”. In many cases, the 
requirements are provided to other organizations 
(contractors, vendors, integrators, etc.) who compete 
to determine the “how to build the what”. There are 
generally multiple design implementations that can 
satisfy requirements. Good requirements attempt not 



to be overly prescriptive so as not to restrict the 
design space. And since the set of core high-level 
functions are extracted and derived from these high-
level requirements, they, too, should describe “what 
actions are required” and not “how to do the actions”. 

Skilled systems engineers will try to select 
physical subsystems that align well with functions, 
but there are limits to how completely this can be 
done because functions usually overlap each other 
when mapped to physical subsystems.  This 
invariably forces a compromise in which some 
functions must be split between subsystems.  It is 
these cross-subsystem functions that are amenable to 
functional analysis.  Functions that truly can be 
contained completely within one subsystem should 
be left for that subsystem to manage on their own.   

In the early phases of the program life cycle, 
functional analysis reveals top-down, system-level 
functions that need to be performed by the system, 
where these functions need to be performed, and how 
often they need to be performed [2]. This is 
accomplished by examining functions according to 
various criteria such as sequence, data exchange, or 
resource usage; decomposing higher-level functions 
into lower-level functions; and allocating functions 
from the program to any number of dependent 
projects [3]. Functions, in this context, are processes 
that take inputs in and transform them into outputs 
[4] to achieve the system goals and objectives. These 
functions may be stated explicitly in the source 
requirements, or they may be derived from 
requirements. They may also be covered partly in 
operational concepts and are at times called by 
different titles like “logical decomposition.” The 
functions will eventually be performed through the 
use of hardware, software and/or people.  

C. The Concept of Inter-Functional 
Architecture 
 

In general a functional architecture contains at 
least a statement of the existence of functional 
subdivisions of a system, and a statement of a set of 
relationships between them.  There may also be 
descriptions of principles and guidelines that govern 
their design and evolution over time [5], or additional 
information describing rationale and stakeholder 
concerns [6]. The artifacts used to express the 

relationships between functions include object 
models, data flow diagrams, state models, activity 
diagrams, functional flow block diagrams (FFBDs), 
and performance budgets, to name a few. These 
artifacts help produce an interim product called the 
functional architecture description (FAD), which 
describes the system in terms of a functional 
decomposition rather than a spatial decomposition.  

We have found useful the concept of an inter-
functional architecture (IFA).  An inter-functional 
architecture is a design structure matrix [7] applied to 
the functional decomposition of the system.  Design 
structure matrices document relationships between 
components, and are the parent class of the 
commonly used N2-diagrams.  We believe that this 
article is the first recognition of applicability of the 
design structure matrix to a functional decomposition 
of the system. The matrix may be represented in 
tabular form as in Table 2 (the X’s represent links to 
other information describing the relationships 
between functions), or in the form of a directed 
graphical representation showing the 
interrelationships between high-level system 
functions (see Figure 3). The latter is more 
convenient when the matrix is sparse.  It is important 
to note that use of data flows in the examples is 
notional; any other kind of relationship can be 
represented in an inter-functional architecture. 

Design structure, in this context, is a statement 
about a set of functional relationships.  Formally, a 
design structure matrix is a set of ordered pairs G = 
(F, L), where F is a finite set of functions, and L is a 
link associated with a rule that assigns relationships 
to groups of functions that are a subsets of F. The 
rows and columns of the matrix, or the nodes on the 
graph, represent various system-level functions in F, 
while the links, L, describe dependencies between 
various functions. The relationships pointed to by (L) 
can represent data flows, state transitions, event 
triggers, open information streams, timing of events, 
etc. The IFA differs from the functional flow block 
diagram, the former being more general and the latter 
being more specific to sequencing and triggering of 
activities. First, the FFBD describes the sequential 
relationship of all functions that must be 
accomplished. The IFA can show any type of 
relationship and is amenable to any of the techniques 
for detecting architectural mismatches that are used  



Table 2. Design Structure Matrix Notional Example for Data Flow Relationships 
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Figure 3. Inter-Functional Architecture Notional Example for Data Flow Relationships 

 

on N2-diagrams; for instance, interface balancing or 
mechanization comparisons.  This is an important 
advantage as it quickly reveals mismatches between 
system-level functions. Second, the FFBD arranges 
functions in a logical sequence whereas the IFA does 
not necessarily. The IFA can be useful in revealing 
missing requirements in addition to architecture 
insights that are more difficult to view using single 
function or physical architectures. 

 

D. Can Functional Analysis and Spatial 
(Physical) Analysis be Combined? 
 

Any hierarchy created by decomposing a system 
depends on the perspective taken by the viewer, and 
subsequently any number of decomposed hierarchies 
can be defined for the same set of systems [8]. The 
logical subsystems for spatial (physical) analysis are 
the physical components. The logical subsystems 



 
Figure 4. Initial Organizational Structure for NASA’s Constellation Program 

 

for functional analysis are the functions. Each 
viewpoint has advantages and disadvantages. 
Similarly, either approach may be able to yield an 
acceptable system solution if due diligence and sound 
system engineering principles are consistently 
applied throughout the life cycle given enough time 
and money. But, in the real world, where divergent 
organizational cultures, different mental models, 
competing paradigms and perspectives exist, some 
organizations prefer one approach over the other or 
choose a combination of both. For example, in the 
recently terminated Constellation program, the 
program’s organizational structure was decomposed 
functionally using Apollo’s “5-box” structure plus an 
additional “Advanced Projects Office” box (Figure 4, 
second row) whereas the projects were decomposed 
physically based on various system components in 
the physical architecture [9] (Figure 4, third row). 
The functional decomposition in Figure 4 (row 2) is 
primarily focused on the people and personnel tasks. 
The functional decomposition described in this paper 
focuses on the required functions of the integrated 
end product, that is, the functions that integrate the 
physical components. Good program management 
serves the people. Good systems engineering serves 
the end product. Functional analysis is needed in both 
regimes. 

E. What is Program-Level Functional 
Analysis? 
 

Program-level functional analysis is functional 
analysis applied at the highest level within a program 
to capture the fundamental set of system functions 
required for the end product to accomplish system-
level goals and objectives. This fundamental or core 
set of functions are established based on explicit and 
derived requirements. Depending on the program’s 
organizational structure [10], projects of the program 
can be decomposed functionally, spatially 
(physically) or both. 

F. How is Program-Level Functional Analysis 
Different from Project-Level Functional 
Analysis? 

 

Whereas program-level functional analysis 
utilizes requirements to establish the core or 
fundamental set of system-level functions, project-
level functional analysis starts with the subset of 
functions allocated from the program. Functional 
analysis at the program-level inherently describes the 
aggregated characteristics of the whole system, as 



opposed to project-level functional analyses which 
inherently describe the partial characteristics for a 
single subsystem.  Furthermore, the program-level 
should only describe “what actions to perform”, 
while most if not all project-level functional analyses 
should include “how to perform the allocated 
function” as well. The program-project relationship 
often represents a parent-child dependency. 
Traceability between the chain of functions between 
the program and the projects must ensure that there 
are no disconnects. The project’s goal is to develop 
products or deliverables that perform the functions 
allocated to them by the program. The programmatic 
goal is to harmonize the partial functions allocated to 
the set of projects to meet program goals and 
objectives. Though program-level functional analysis 
contains high-level functions and should stop 
decomposing when project-level functions are 
reached, project-level functions can be extremely 
detailed, exhaustively including all sub-functions 
required to realize complete implementations of the 
partial functions allocated to them by the program. 

III. The Necessity of Functional 
Analysis for Space Exploration 
Programs  

 

The philosopher, poet and novelist George 
Santayana once wrote [11], “Those who cannot 
remember the past are condemned to repeat it.” This 
wisdom embodies the efforts of many organizations 
and individuals (managers, engineers, scientists, etc.) 
who want to learn from past mistakes in order to 
grow, mature and improve. NASA is one such 
organization that attempts to explicitly learn from 
past faults and failures. A few years before Shuttle 
retirement, NASA leaders addressed several technical 
and management/leadership lessons learned from the 
Shuttle in order to leverage this knowledge on future 
human space exploration efforts. One of the technical 
lessons learned [12] was called “Simplification by 
functional integration versus complexity by 
decomposition.” In this lesson, the leaders preferred 
the benefits of functional integration as a means of 
providing a strong connection between system 
components. In the reference, the term “complexity 
by decomposition” refers to a phenomenon where 
excessively segmented spatial (physical) subsystems 
add functional complexity elsewhere in the system. 

As we have already discussed earlier, functional 
analysis has definite advantages over spatial analysis 
alone. One of the management/leadership lessons 
learned from the Space Shuttle involved “cost control 
versus cost assessment.” The primary lesson is 
leadership must control costs across the entire life 
cycle. This is accomplished by leadership not 
allowing costs to be neglected or to become 
reactionary. The neglect of utilizing effective 
integration tools (like functional analysis) has a 
profound impact on costs. In another report 
describing lessons learned during Space Shuttle 
Integration, Boeing’s Space Shuttle Orbiter Program 
Director exclaimed [13], “We were not as smart as 
we thought we were! Develop and maintain a strong 
integration team throughout the program life cycle. 
Empower integration to challenge the elements and 
program on issues of design flaws and interaction 
between the elements.” Strong integration is relevant 
and required from both technical and leadership 
perspectives. Technically, strong integration requires 
tools and techniques that manage the interfaces, 
interactions and influences between the parts of the 
system. From a leadership perspective, program 
integration and project engineering should be staffed 
with respected peers who have the courage to tackle 
issues. It is safe to infer from these and other lessons 
that neglect of strong integration (via people and 
engineering tools) has a significant impact on costs 
and schedule. 

It is in the same manner that we focus on 
functional analysis as a means of coordinating the 
actions of large and diverse organizations for space 
exploration. This section will address functional 
analysis as a partial solution to heterogeneous 
program integration, the theoretical advantages of 
functional analysis, various approaches to developing 
an inter-functional architecture, as well as the pitfalls 
which may be encountered. The consequences of 
neglecting functional analysis at the program level 
will also be discussed. 

A. A Partial Solution for Heterogeneous 
Exploration Program Integration 
 

Most of the lessons learned from previous space 
exploration programs have been clustered into 
categories generally termed “management/ 
leadership” and “technical”. Both categories are 



complementary and both are required to achieve 
program end product success. Functional analysis, 
particularly at the program integration level, appears 
to provide part of the solution that enables strong 
product integration. This is because functional 
analysis efficiently bridges the gap between system-
level requirements (what is holistically wanted from 
the system) and lower-level project implementations. 
Functional analysis at the system level (for long term 
space exploration ventures) is usually technology-
independent which means it is an excellent tool for 
guiding product behavior over an extended life cycle. 
Given the unpredictability and uncertainty involved 
with space exploration, functional analysis is also 
evolvable and traceable vertically (from program to 
project and vice-versa) and horizontally (from project 
to project via a higher-level functional allocation). 
When implemented with sound engineering 
principles, functional analysis can provide increased 
costs savings (compared to political or ad hoc 
interface management) as well as efficiencies in 
communication which positively impact schedule. 
Functional analysis effectively serves as a technical 
communications tool between the program and the 
projects.  

B. Theoretical Advantages of Functional 
Analysis 
 

There are three main advantages to a program that 
result from including functional analysis in the 
system design process: improved performance of the 
organization, reduced risk to the program, and 
enhanced safety of the resulting system. These 
advantages are theoretical in the sense that there is a 
train of logic that leads one to expect the advantage, 
but these advantages have not, to our knowledge, 
been experimentally verified.  There have been some 
anecdotal reports of success which we will point out, 
and there is also a large body of both experimental 
and anecdotal information that supports the converse 
assertion:  that there are disadvantages to omitting 
functional analysis. 

1. Performance Advantages 

One important measure of the performance of a 
program team is the accuracy of its cost estimates.  In 
a study carried out by the NASA Space Propulsion 
Synergy Team (SPST), it was found that controlling 

the lifecycle cost of a launch vehicle depended 
heavily on having a complete definition of the 
requirements at the beginning [14].  Also, among the 
most common factors for failure of software projects 
is an inaccurate estimate of needed resources [15].  
The accuracy of a cost estimate depends to some 
degree on the completeness of the requirements; that 
is, if requirements are missing, they will not be 
included in early cost estimates, setting the stage for 
an upward trend of the estimate over time.  The SPST 
recognized, and we independently recognized, that a 
functional analysis is essential to finding all the 
requirements.  One reason is that the top-level system 
requirements, even if they happen to be complete, 
only express the requirements on the system as a 
whole.  They do not express derived requirements 
that result from relationships between physical 
subsystems.  Another reason is that the top-level 
requirements do not express derived requirements 
that result from relationships between functions, e.g. 
the need for communication functions to prioritize 
certain kinds of control or fault management data, or 
for power and thermal management to consider the 
constraints imposed by vehicle pointing for 
propulsion.  The functionally-derived requirements 
can be significant drivers on both system cost and 
engineering cost, and they can only be found using a 
functional architecture. 

Another important measure of the performance of 
a program team is its rapidity of converging to a 
solution. If a system were decomposed only along 
spatial lines, as is often done, it is easy to get insight 
into the physical relationships between the 
subsystems.  It is much harder to get insight into the 
functional relationships starting from only a spatial 
decomposition.  Our experience with the 
Constellation program was that functional 
relationships could be discovered eventually, starting 
from a purely spatial decomposition.  The process 
used was to allocate high-level requirements to 
subsystems, synthesize subsystem designs, take note 
of their dependencies, organize the dependencies into 
functional clusters, analyze the functions to 
determine the functional relationships, and only then 
update the subsystem requirements to include the 
functionally-derived ones.  However, this was a very 
long and expensive process in terms of  personnel 
and time. The same thing could have been 
accomplished directly, in a shorter time, by starting 
the requirements analysis at the top level using a 



functional decomposition in parallel with the spatial 
one.  

A program team using functional analysis will 
often encounter design situations where they 
recognize that the same function must be performed 
in many different locations, typically having to do 
with a distributed function such as communication, 
data management or fault management.  This is an 
opportunity to introduce commonality into the overall 
system design so as to achieve a superior solution in 
terms of cost and complexity.  

Interface development can be aided with the use 
of a system-level functional analysis.  The cross-
subsystem functions, once understood, set 
requirements on the partial functions allocated to the 
subsystems.  In turn, these define expectations on the 
interfaces that must be met if the top-level functions 
are to be realized.  These expectations become 
interface requirements that can be stated as a target 
for the subsystem to meet.  This method avoids the 
substantial time required for projects to discover 
otherwise unknown interface requirements through 
their own mutual interaction, and is usually less 
costly. 

Fault management also benefits from functional 
analysis. Fundamentally, fault management has to 
make decisions about which functions to preserve in 
the event of a fault. Fault management analyses are 
often linked and interdependent with hazard analyses 
efforts with respect to must-work and must-not-work 
functions. So, of necessity, a fault management 
analysis depends on a functional analysis in its quest 
to determine which functions to preserve in the event 
of a fault. In the absence of an explicit functional 
analysis for the top-level system, the functional 
management effort has to perform a functional 
analysis of its own. This, however, is often done 
incompletely and solely for the purposes of fault 
management. The results can be 1) excessive time 
spent on fault management design while the 
functional analysis is being completed; 2) incomplete 
functional analysis, or 3) inconsistent functional 
analyses across disciplines. Overall engineering costs 
should be less by performing a single complete, 
consistent functional analysis for use by all technical 
disciplines. 

Use of a functional decomposition at the top-level 
can help a program escape a peculiar trap when it 
comes to designing physical systems to match 

operations roles, and vice-versa.  This trap is 
organizationally enticing because it gives the illusion 
that managing the people is the same as managing the 
operation. At the top-level, spatial boundaries 
inherently separate machines from human operators.  
The top-level owner, either the program manager or 
the system engineer, becomes responsible for 
managing the engineering transactions between the 
people (the machine engineers and the operations 
engineers).  On large programs, the traffic between 
the people often overwhelms the manager who 
subsequently neglects the management of lower-level 
details. Under this circumstance, essentially no one is 
managing the match between human and machines.  
The way out of this trap is to use functional 
boundaries that keep both machines and operators 
together.  An engineer given authority within the 
function can then define the allocation of sub-
functions between machines and operators, and make 
sure that they play together effectively. 

We believe that the greatest organizational 
performance advantage offered by functional analysis 
is the ability to exactly define the top-level 
engineering responsibility, authority, and 
accountability.  The cross-project functions are those 
things that make the top-level system more than the 
sum of its parts.  The cross-project functions are the 
reason for having a top-level system rather than 
merely a loose assemblage of subsystems under the 
care of a custodial parent organization that has little 
say in their development.  The top-level organization 
is responsible for defining the cross-project 
functions; has authority over their design, 
verification, and integration; and is accountable if the 
cross-project functions are not realized.  If only a 
physical decomposition is used, there is no concrete 
representation of the cross-project functions, and the 
top-level organization is at an extreme disadvantage 
in trying to create them.  In fact, there is little the top-
level organization could point to as its unique role 
beyond physical assembly, and even that could be 
delegated to one or a few of the projects.  There 
would be nothing to design, and anything further in 
terms of controlling budget, schedule, performance, 
or risk would duplicate what the projects could do for 
themselves.  Conversely, a concrete representation of 
the cross-project functions facilitates communicating 
goals, allocating requirements, and verifying the 
overall system.   



2. Risk Advantages 

Every program faces the risk that it will make 
errors that create gaps, duplications, and 
inconsistencies in the system architecture early in the 
design process.  If the team is not aware of 
functionally-derived requirements, then analysts 
cannot detect functional errors in the architecture, 
with the result that the errors persist into the final 
product.  Such errors will not be found until the 
system validation process which occurs very late in 
the development cycle.  The errors can be corrected 
at that time, but at higher cost than if detected early.  
Thus, being able to discover functionally-derived 
requirements is important in correcting errors during 
the design phase. Indeed, many requirements-driven 
errors can be found using functional analysis without 
any investment in testing, development, simulations, 
or even the system design process.  This makes it less 
costly than other techniques to overcome 
requirements errors. 

The integration phase is often the time that latent 
errors are discovered.  With a spatial decomposition, 
integration of the system can begin when the spatial 
subsystems are complete.  When subsystems are 
connected, the system-level functions exist for the 
first time, and tests on them can begin.  The down 
side is that failures of the system-level functions are 
discovered in a high-cost environment, with all 
machines and all teams up and running, often in a co-
located scenario under severe time constraints.  As an 
alternative, top-level system functions can provide 
useful integration insights due to the way functions 
are bounded.  One system-level function can be 
assembled at a time using partial versions of the 
spatial subsystems as they become available, using 
only as much co-location or system fidelity as is 
needed to verify that particular function.  If extra 
instances of the partial subsystems are available, the 
integration of single functions can be done in parallel. 
The early testing of system-level functionality 
increases the level of confidence that the full system 
will be integrated successfully. 

3. Safety Advantages 

An issue common to all safety analyses is whether 
the analysis is complete.  If only physical 
components are considered, then only physical 
hazards can be addressed.  Addition of a functional 
analysis enables identification of functional hazards 
as well as hazards that are physically obvious. In the 

case of integrated hazard analysis on the 
Constellation program, identifying the complete set 
of must-work and must-not-work functions was 
critical to providing a complete set of hazard 
mitigations because distributed systems must be 
analyzed for hazards in terms of the functions that 
rely on them [16].  Using a companion functional 
hazard analysis, we found a number of otherwise-
unrecognized hazards, which completed the hazard 
list.  Once these were identified, a set of hazard 
controls were developed to mitigate the known 
hazards.  Completeness can be judged against the list 
of known hazards, and dependability cases can be 
constructed to prove completeness of the analysis 
[17, 18]. Certification of readiness is then 
straightforward: if the logic of the dependability case 
is correct, then the system is dependable for the 
intended use and can be certified given the 
verification evidence.    

A final safety advantage may be available in 
some circumstances: finding system solutions that cut 
down on physical redundancy, but that still meet 
safety requirements.  The risk in physical redundancy 
is common cause errors. When a common defect is 
found in one physical component, confidence is lost 
in all similar physical components. Functional 
redundancy can be viewed as a mitigation against 
common cause errors because it increases the 
robustness of fault tolerant designs by increasing 
dissimilar legs of redundancy. Additionally, 
functional redundancy also provides 
cost/volume/weight advantages. For example, 
suppose that having accurate time on a system clock 
is critical to the safety of a space vehicle.  Rather 
than carrying a number of physical clocks, the 
navigation function may be able to determine time 
from external observations.  

C. Approaches to Development of an Inter-
Functional Architecture 
 

We have observed three successful approaches to 
developing inter-functional architectures. 

1. Fiat Approach 

In the fiat approach, a set of functions is asserted 
by the analyst.  This can be done top-down, asserting 
a decomposition and then from that deriving the 
relationships between the functions.  Alternatively, 



this can be done bottoms-up, in which the analyst 
asserts a composition from known sub-functions.  In 
either direction, the analyst may refer to functions as 
expressed by customers or suppliers of the system 
under consideration, or may refer to previously-
identified design patterns such as the Hatley-Pirbhai 
template [19]. 

2. Use Case Approach 

In the use-case approach, the analyst identifies 
scenarios describing the system operation using 
actor-verb-object statements.  The verbs are then 
analyzed to identify functional decomposition (or 
composition). 

 
3. Temporal Approach 

In the temporal approach, the analyst describes 
the system operation using required timelines of 
events.  The analyst then identifies transformations 
that must occur between events.  The transformations 
are used to generate a candidate set of functions, 
which then may be organized as either a 
decomposition or a composition (see comment on the 
pitfall of temporality below).  

D. Pitfalls in Functional Analysis 
 

1. Failure to Consider Alternatives 

The first functional architecture found is rarely the 
best.  Buede [4] recommends trying alternate 
decompositions, disaggregating the functions 
differently, bundling and unbundling transactions 
differently, re-evaluating functional dominance in 
terms of feedback and control, catching interface 
errors.  Of course the judgment of “best” is a 
problematic issue, but some reasonable factors to 
consider are sufficiency for the problem space, 
interface balance, freedom from gaps and undesired 
overlaps, complexity of mapping to the physical 
decomposition, and verifiability. 

2. Temporality 

Particularly when following the temporal 
approach, it may be tempting to make a one-to-one 
identification between periods of activity and the 
functions.  To see the consequence of succumbing to 
this temptation, consider an elevator system.  One 
potential timeline for the system might be: 

 

Passengers request use of the elevator 

Elevator goes to the first floor 

Passengers ingress car on the first floor 

Elevator goes to the second floor 

Passengers egress car on the second floor 

… 

Elevator goes to the top floor 

Passengers egress car on the top floor 

 

Using a strict identification of activity into 
function, the functions would be: 

Request use 

Go to first floor 

Ingress first floor 

Go to second floor 

Egress second floor 

… 

Go to top floor 

Egress top floor 

 

There are at least three deficiencies of the 
resulting set of functions.  Perhaps the most obvious 
is that there are too many nearly identical functions; 
“go to floor” would be more useful than “go to floor 
N”.  The next deficiency is that the timeline only 
expressed one possible sequence of operation.  There 
are many possible sequences for an elevator to 
execute, so the timeline does not express that 
possibility well.  This is very typical of “happy day” 
analyses that ignore the possibility of error conditions 
that require the system to execute contingency 
sequences. The third deficiency is that many 
functions are missing: support of riding passengers, 
emergency communication, or maintenance are a few 
that come to mind.  It is usually necessary to go back 
and consider alternative decompositions after starting 
on a temporal approach to alleviate these kinds of 
deficiencies. 



3. Excessive Abstraction 

In the functional decomposition or recomposition 
processes, functions can become too general or 
obscure to be used as meaningful kernels of 
allocation, integration, or testing later in system 
development.  The functions should be checked to 
ensure that they make sense for the later uses. 

4. Poor Timing 

The work of functional analysis can be 
intellectually challenging or unfamiliar, and as a 
result can end up taking too long considering the 
surrounding program constraints. The work of 
functional analysis should keep up with the 
prevailing schedule, making contributions to the 
surrounding development effort as increments of 
understanding appear.  On the other hand, work that 
is done too soon may lack ability to influence 
decisions when they are eventually made (decision 
makers may not, or may not know how to, use the 
artifacts resulting from functional analysis).  
Discussion of functional analysis results is most 
fruitful in the context of an active design process. 

E. The Consequences of Neglecting Program-
Level Functional Analysis 
 

The consequences of neglecting program-level 
functional analysis can be measured quantitatively as 
well as qualitatively. Quantitative measures include 
increased costs and expanded schedules. Qualitative 
measures include nonproductive and ineffective use 
of resources due to misexpectations and 
miscommunications between program teams. 
Because of the surrounding reality of changes of 
direction (in terms of funding and guidance), the 
exploration program often received significant 
impacts in unexpected and inadvertent ways. NASA 
leadership just recently released a compilation of 
Constellation lessons learned [20] where they 
focused primarily on nontechnical challenges. 

One of the unintended impacts on the 
Constellation program occurred at the very beginning 
during the start-up phasing between the projects and 
the program.  

“Two of the primary projects, the Orion 
Crew Exploration Vehicle and the Ares Crew 
Launch Vehicle, were begun well in advance 

of the Constellation Program. This enabled 
rapid start-up and early results from each 
project. They functioned for some time without 
an integration function between them...These 
factors led to costly contract changes when the 
appropriate level of integration for a complete 
architecture was better understood. This 
approach also provided an additional 
integration challenge. The projects had formed 
requirements, budgets, design approaches, 
acquisition strategies, etc., that needed to be 
integrated retroactively. The late addition of 
the integrating functions had a long-term effect 
that was not fully resolved by the end of the 
program. Strategies that were in a collective 
self-interest for the program were 
extraordinarily difficult to implement due to 
the cost of contract changes...Moreover, 
integrated analyses by the program uncovered 
technical issues that could have been caught 
earlier (and been resolved in a more efficient 
manner) if the start-up timing had been 
different. Incentives on contracts were 
developed primarily to benefit each project 
rather than the overall program. Missing were 
incentives for contractors to participate in 
technical solutions that benefit the integrated 
program. This drove results that were less than 
optimum, and sometimes not mutually 
compatible” [20]. 

One of the technical issues (not mentioned in the 
report) that had a delayed effect on the program was 
the deferred use of functional analysis during early 
stages in the program life cycle.  Though a partial 
product had been developed, the impact of deferring 
functional analysis was not noticed for a number of 
years which significantly impacted cost and schedule 
due to retroactive rework. Only after progressing 
toward the end of the preliminary design was it 
manifest that multiple program-level teams were 
experiencing difficulty in justifying a complete end-
to-end integrated story. Even though program 
requirements were traceable to the projects, there was 
difficultly in consistently translating the requirements 
into actions and difficultly in determining if there 
were gaps or missing system-level functions which 
led to (in some cases) omissions of duties and 
unnecessary redundancies between program-level 
teams. In due time, program-level teams identified 
the need for a complete end-to-end functional 



analysis. This issue, however, was not fully resolved 
by the end of the program.  

Without a functional analysis, it may be difficult 
for a program to converge to an acceptable system 
design, to recognize opportunities for commonality, 
to identify gaps in contracts with vendors for 
subordinate systems, to avoid discovering unintended 
emergent behaviors or major errors late in the 
lifecycle, to manage the human-machine interface, to 
identify system-level verification and validation 
criteria, or to certify that its system is safe.  If any of 
these difficulties are encountered, we would suggest 
looking back over the history to see whether a 
functional analysis was done; if not, it is essential to 
complete one before such situations can be corrected. 
Of course, it is undesirable to go without the benefits 
of performing functional analysis early, but to some 
extent, functional analysis can be performed later in 
the life-cycle for emergency redesigns of the program 
or the system. 

The absence of a functional analysis is likely to 
produce a situation where the top-level engineering 
organization is not aware of the emergent qualities 
introduced by the interactions of the system 
components. The organization may erroneously come 
to the conclusion that the top level has no legitimate 
engineering function, and managerially has no reason 
to exist beyond double-checked accountability 
imposed on the lower-level organizations.  The 
sequel is a self-fulfilling prophecy, in which the 
organization believes there is no need for system-
level qualities, and the final product ends up having 
none.  Essentially, this situation is an abrogation of 
the entire concept of systems engineering. 

IV. Conclusions  
As NASA evolves its human space exploration 

capability to include diverse partners, there is an 
increased need to integrate and effectively allocate 
responsibilities between government and commercial 
stakeholders to achieve coordinated results. The 
system engineering and integration technique of 
functional analysis will provide performance, risk, 
and safety advantages to such a large-scale 
government-commercial partnership by helping to 
manage the interfaces, interactions and influences 
between diverse components and heterogeneous 
players. Lessons learned from the Space Shuttle and 
Constellation programs all attest to the sustained need 

for strong program-level functional integration across 
the life cycle as a means of achieving mission success 
within cost and schedule constraints. For large-scale 
exploration programs, there needs to be a paradigm 
shift away from a tendency to see cost and schedule 
as separated from the way the organization goes 
about realizing the end product (via people or the 
technical end product). The organization (of the 
people and the end product) and the methods by 
which the product is integrated both have direct and 
indirect effects on cost and schedule. Functional 
analysis is an effective solution that can both improve 
and clarify the connections between costs, schedule 
and organization of the technical effort. 
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