
THE NECESSITY OF FUNCTIONAL ANALYSIS FOR SPACE EXPLORATION
PROGRAMS

A. Terry Morris, NASA Langley Research Center, Hampton, Virginia 23681
Julian C. Breidenthal, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,

California 91109

Abstract
As NASA moves toward expanded commercial

spaceflight within its human exploration capability,
there is increased emphasis on how to allocate
responsibilities between government and commercial
organizations to achieve coordinated program
objectives. The practice of program-level functional
analysis offers an opportunity for improved
understanding of collaborative functions among
heterogeneous partners. Functional analysis is
contrasted with the physical analysis more commonly
done at the program level, and is shown to provide
theoretical performance, risk, and safety advantages
beneficial to a government-commercial partnership.
Performance advantages include faster convergence
to acceptable system solutions; discovery of superior
solutions with higher commonality, greater simplicity
and greater parallelism by substituting functional for
physical redundancy to achieve robustness and safety
goals; and greater organizational cohesion around
program objectives. Risk advantages include
avoidance of rework by revelation of some kinds of
architectural and contractual mismatches before
systems are specified, designed, constructed, or
integrated; avoidance of cost and schedule growth by
more complete and precise specifications of cost and
schedule estimates; and higher likelihood of
successful integration on the first try. Safety
advantages include effective delineation of must-
work and must-not-work functions for integrated
hazard analysis, the ability to formally demonstrate
completeness of safety analyses, and provably correct
logic for certification of flight readiness. The key
mechanism for realizing these benefits is the
development of an inter-functional architecture at the
program level, which reveals relationships between
top-level system requirements that would otherwise
be invisible using only a physical architecture. This
paper describes the advantages and pitfalls of
functional analysis as a means of coordinating the
actions of large heterogeneous organizations for
space exploration programs.

I. Introduction
After the termination of the Constellation program
(CxP) and subsequent to the retirement of the Space
Shuttle program (SSP), the United States intends to
move in a new direction characterized by increasing
commercial interaction and participation in space
exploration with the goal of sustained human
presence in low Earth orbit (LEO) and beyond.
NASA’s Exploration Systems Mission Directorate
(ESMD) is tasked with developing the systems and
capabilities required to enable affordable commercial
crew access to the International Space Station (ISS)
and to launch crewed vehicles for missions beyond
LEO. The primary aim of increased commercial
spaceflight to LEO will be the development and
operation of vehicles that could become the nation’s
primary means of ISS crew transportation thus
reducing America’s reliance on foreign systems [1].
This new direction to achieve affordable space
exploration capabilities mandates the need to perform
systems integration correctly, particularly among
government and commercial entities that are
heterogeneous by nature with sometimes competing
goals. In its initial planning, ESMD has already
identified three major risks for commercial crew
capabilities (see Table 1, first three rows): failure of a
commercial partner, uncertainty regarding emerging
commercial market demand and requirements unique
to NASA [1].

The purpose of this paper is to argue the need
for establishing functional architectures as a means of
weaving and integrating the goals and requirements
of public-private space exploration partnerships.
Functional analysis, as expressed in this paper, can be
seen as a critical mitigation approach for the risk of
NASA-unique requirements (see Table 1, row three)
and for the risk of inadequate program integration of
government and commercial crew (see Table 1, row
four).

Table 1. NASA Programmatic Risks Concerning
Commercial Crew

Risk Title Risk Statement
Failure of a
Commercial Partner

Commercial partners may not be able to
complete the demonstration phase and thus
NASA’s investment would not result in
available commercial services.

Uncertainty
Regarding Emerging
Commercial Market
Demand

With a minimum of only two flights per year
from NASA and an uncertain non-NASA
market, potential providers may be wary of the
commercial business potential.

Requirements
Unique to NASA

NASA-unique requirements will increase the
cost to provide services such that the
commercial providers may not be able to
capture non-NASA markets.

Inadequate Program
Integration of
Government and
Commercial Crew
Products

Program management may not integrate
divergent government and commercial interests
resulting in increased costs, inefficiencies
and/or program termination.

II. Background

A. Managing the Interfaces, Interactions and
Influences via Effective System Integration

System integration, in general, involves
managing the interfaces, interactions and influences
of the players and components of a system in order to
achieve the end product or mission. Integration
management, in the context of large scale systems, is
an arduous and time-consuming process, particularly
between heterogeneous stakeholders with divergent
agendas. We assert that both good program
management and effective system integration are
fundamentally necessary to achieve commercial crew
exploration goals within funding and timing
constraints. This point is often overlooked because
many managers looking to save costs believe that
physically independent or (physically) loosely
coupled systems do not require system integration
effort. The purpose of good program management is
to direct the program toward program success. The
purpose of effective system integration is the success
of the end product. Broadly speaking, system
integration is the process of bringing together the
component subsystems into one system and ensuring
that the subsystems function together as a
coordinated whole. Simply stated, system integration

is more than system assembly. A foundational tool in
the system integration arsenal is functional analysis
which can be used at both the programmatic system
level and the lower project subsystem levels. In this
paper, we will use the term “system” to refer to the
coordinated product at the program level and the term
“subsystem” to refer to project-level products.
Depending on the scope of the project, its subsystem
can be very large and can be sub-divided into
multiple lower-level subsystems. As a high level risk
mitigation tool, the authors intend to focus primarily
on the programmatic benefits of functional analysis.

B. What is Functional Analysis?

The goal of the systems design process is to
transform explicit and latent requirements into a
coherent description of system functions that can be
used to guide a design (Figure 1). In this endeavor it
is very common to decompose a system into smaller
pieces that can be more easily understood. Those
smaller pieces are divisions of the system using a
separation criterion: typically spatial1 in the case of
hardware or facilities, administrative in the case of
organizations, or in the case of software some other
criterion such as boundaries of configuration items.
From this division arises the concept of interfaces,
regions of interaction between the decomposed
pieces.

In principle there are as many possible
separation criteria as there are distinctions within
human thought. We will concentrate here on just two
commonly used criteria: spatial and functional.
Choosing to decompose a system spatially leads to
one particular kind of system architecture, while
choosing to decompose a system functionally leads to
another, as sketched in Figure 2. Each of these
potential decompositions is both useful, and by itself,
inadequate. The spatial decomposition has the ability
to reveal spatial relationships, and is convenient for
organizing characteristics that have a clear
relationship to spatial boundaries such as mass,
temperature, or energy flow. The functional
decomposition reveals functional relationships, and is

1Footnote 1 The term “physical” is a common substitution for
“spatial”, though strictly speaking there are other physical
distinctions that might be used as criteria for decomposition such
as time, density, temperature, etc.

Figure 1. Overview of System Design Process [2]

Space
Transportation

System

SPATIAL DECOMPOSITION

Launch
Vehicle

Launch
Pad

Control
Center

Flight
Vehicle

Space
Habitat

Space
Suit

Comm
Network

Repair
Depot

Space
Transportation

System

FUNCTIONAL DECOMPOSITION

Planning Telecom Guidance Energy
Mgt

Life
Support Propulsion Fault Mgt Structure

Mgt

Figure 2. Two Decompositions of the Same Space Transportation System

convenient for organizing characteristics that have a
clear relationship to functional boundaries such as
computational loading, response time, or data
volume. However, neither decomposition type can
reveal the relationships accessible using the other.
To the extent that success of a system depends on
management of spatial and functional characteristics
at the same time, both decompositions are necessary.
Functional analysis, then, is a systematic process of,
decomposing, describing and relating the functions a
system must perform in order to achieve end product
success. It is important to note that functional

analysis at the top program-level probably should not
address how these functions will be performed. This
is because large scale systems generally have
multiple levels of planning, coordination and
implementation. The program level utilizes
requirements to determine what it wants. These
requirements describe the “what”. In many cases, the
requirements are provided to other organizations
(contractors, vendors, integrators, etc.) who compete
to determine the “how to build the what”. There are
generally multiple design implementations that can
satisfy requirements. Good requirements attempt not

to be overly prescriptive so as not to restrict the
design space. And since the set of core high-level
functions are extracted and derived from these high-
level requirements, they, too, should describe “what
actions are required” and not “how to do the actions”.

Skilled systems engineers will try to select
physical subsystems that align well with functions,
but there are limits to how completely this can be
done because functions usually overlap each other
when mapped to physical subsystems. This
invariably forces a compromise in which some
functions must be split between subsystems. It is
these cross-subsystem functions that are amenable to
functional analysis. Functions that truly can be
contained completely within one subsystem should
be left for that subsystem to manage on their own.

In the early phases of the program life cycle,
functional analysis reveals top-down, system-level
functions that need to be performed by the system,
where these functions need to be performed, and how
often they need to be performed [2]. This is
accomplished by examining functions according to
various criteria such as sequence, data exchange, or
resource usage; decomposing higher-level functions
into lower-level functions; and allocating functions
from the program to any number of dependent
projects [3]. Functions, in this context, are processes
that take inputs in and transform them into outputs
[4] to achieve the system goals and objectives. These
functions may be stated explicitly in the source
requirements, or they may be derived from
requirements. They may also be covered partly in
operational concepts and are at times called by
different titles like “logical decomposition.” The
functions will eventually be performed through the
use of hardware, software and/or people.

C. The Concept of Inter-Functional
Architecture

In general a functional architecture contains at
least a statement of the existence of functional
subdivisions of a system, and a statement of a set of
relationships between them. There may also be
descriptions of principles and guidelines that govern
their design and evolution over time [5], or additional
information describing rationale and stakeholder
concerns [6]. The artifacts used to express the

relationships between functions include object
models, data flow diagrams, state models, activity
diagrams, functional flow block diagrams (FFBDs),
and performance budgets, to name a few. These
artifacts help produce an interim product called the
functional architecture description (FAD), which
describes the system in terms of a functional
decomposition rather than a spatial decomposition.

We have found useful the concept of an inter-
functional architecture (IFA). An inter-functional
architecture is a design structure matrix [7] applied to
the functional decomposition of the system. Design
structure matrices document relationships between
components, and are the parent class of the
commonly used N2-diagrams. We believe that this
article is the first recognition of applicability of the
design structure matrix to a functional decomposition
of the system. The matrix may be represented in
tabular form as in Table 2 (the X’s represent links to
other information describing the relationships
between functions), or in the form of a directed
graphical representation showing the
interrelationships between high-level system
functions (see Figure 3). The latter is more
convenient when the matrix is sparse. It is important
to note that use of data flows in the examples is
notional; any other kind of relationship can be
represented in an inter-functional architecture.

Design structure, in this context, is a statement
about a set of functional relationships. Formally, a
design structure matrix is a set of ordered pairs G =
(F, L), where F is a finite set of functions, and L is a
link associated with a rule that assigns relationships
to groups of functions that are a subsets of F. The
rows and columns of the matrix, or the nodes on the
graph, represent various system-level functions in F,
while the links, L, describe dependencies between
various functions. The relationships pointed to by (L)
can represent data flows, state transitions, event
triggers, open information streams, timing of events,
etc. The IFA differs from the functional flow block
diagram, the former being more general and the latter
being more specific to sequencing and triggering of
activities. First, the FFBD describes the sequential
relationship of all functions that must be
accomplished. The IFA can show any type of
relationship and is amenable to any of the techniques
for detecting architectural mismatches that are used

Table 2. Design Structure Matrix Notional Example for Data Flow Relationships
 Guidance Thermal Display &

Controls
Fault
Mgt

Recovery
Mgt

Sequencing Comm Miss Plan

Guidance X X

Thermal X X X

Display &
Controls

 X

Fault Mgt

Recovery Mgt X

Sequencing X X

Comm X

Miss Plan X

Guidance

Thermal
Mgt

Fault
Mgt

Miss.
Planning

Comm

Recov.
Mgt

Sequencing

Displays and
Controls

orientation desired
temperature

time
GPS datadesired

state

viewperiods
station schedule

telemetry

automation
goals

beacon data

weather obs.

System State

mission plan

Figure 3. Inter-Functional Architecture Notional Example for Data Flow Relationships

on N2-diagrams; for instance, interface balancing or
mechanization comparisons. This is an important
advantage as it quickly reveals mismatches between
system-level functions. Second, the FFBD arranges
functions in a logical sequence whereas the IFA does
not necessarily. The IFA can be useful in revealing
missing requirements in addition to architecture
insights that are more difficult to view using single
function or physical architectures.

D. Can Functional Analysis and Spatial
(Physical) Analysis be Combined?

Any hierarchy created by decomposing a system
depends on the perspective taken by the viewer, and
subsequently any number of decomposed hierarchies
can be defined for the same set of systems [8]. The
logical subsystems for spatial (physical) analysis are
the physical components. The logical subsystems

Figure 4. Initial Organizational Structure for NASA’s Constellation Program

for functional analysis are the functions. Each
viewpoint has advantages and disadvantages.
Similarly, either approach may be able to yield an
acceptable system solution if due diligence and sound
system engineering principles are consistently
applied throughout the life cycle given enough time
and money. But, in the real world, where divergent
organizational cultures, different mental models,
competing paradigms and perspectives exist, some
organizations prefer one approach over the other or
choose a combination of both. For example, in the
recently terminated Constellation program, the
program’s organizational structure was decomposed
functionally using Apollo’s “5-box” structure plus an
additional “Advanced Projects Office” box (Figure 4,
second row) whereas the projects were decomposed
physically based on various system components in
the physical architecture [9] (Figure 4, third row).
The functional decomposition in Figure 4 (row 2) is
primarily focused on the people and personnel tasks.
The functional decomposition described in this paper
focuses on the required functions of the integrated
end product, that is, the functions that integrate the
physical components. Good program management
serves the people. Good systems engineering serves
the end product. Functional analysis is needed in both
regimes.

E. What is Program-Level Functional
Analysis?

Program-level functional analysis is functional
analysis applied at the highest level within a program
to capture the fundamental set of system functions
required for the end product to accomplish system-
level goals and objectives. This fundamental or core
set of functions are established based on explicit and
derived requirements. Depending on the program’s
organizational structure [10], projects of the program
can be decomposed functionally, spatially
(physically) or both.

F. How is Program-Level Functional Analysis
Different from Project-Level Functional
Analysis?

Whereas program-level functional analysis
utilizes requirements to establish the core or
fundamental set of system-level functions, project-
level functional analysis starts with the subset of
functions allocated from the program. Functional
analysis at the program-level inherently describes the
aggregated characteristics of the whole system, as

opposed to project-level functional analyses which
inherently describe the partial characteristics for a
single subsystem. Furthermore, the program-level
should only describe “what actions to perform”,
while most if not all project-level functional analyses
should include “how to perform the allocated
function” as well. The program-project relationship
often represents a parent-child dependency.
Traceability between the chain of functions between
the program and the projects must ensure that there
are no disconnects. The project’s goal is to develop
products or deliverables that perform the functions
allocated to them by the program. The programmatic
goal is to harmonize the partial functions allocated to
the set of projects to meet program goals and
objectives. Though program-level functional analysis
contains high-level functions and should stop
decomposing when project-level functions are
reached, project-level functions can be extremely
detailed, exhaustively including all sub-functions
required to realize complete implementations of the
partial functions allocated to them by the program.

III. The Necessity of Functional
Analysis for Space Exploration
Programs

The philosopher, poet and novelist George
Santayana once wrote [11], “Those who cannot
remember the past are condemned to repeat it.” This
wisdom embodies the efforts of many organizations
and individuals (managers, engineers, scientists, etc.)
who want to learn from past mistakes in order to
grow, mature and improve. NASA is one such
organization that attempts to explicitly learn from
past faults and failures. A few years before Shuttle
retirement, NASA leaders addressed several technical
and management/leadership lessons learned from the
Shuttle in order to leverage this knowledge on future
human space exploration efforts. One of the technical
lessons learned [12] was called “Simplification by
functional integration versus complexity by
decomposition.” In this lesson, the leaders preferred
the benefits of functional integration as a means of
providing a strong connection between system
components. In the reference, the term “complexity
by decomposition” refers to a phenomenon where
excessively segmented spatial (physical) subsystems
add functional complexity elsewhere in the system.

As we have already discussed earlier, functional
analysis has definite advantages over spatial analysis
alone. One of the management/leadership lessons
learned from the Space Shuttle involved “cost control
versus cost assessment.” The primary lesson is
leadership must control costs across the entire life
cycle. This is accomplished by leadership not
allowing costs to be neglected or to become
reactionary. The neglect of utilizing effective
integration tools (like functional analysis) has a
profound impact on costs. In another report
describing lessons learned during Space Shuttle
Integration, Boeing’s Space Shuttle Orbiter Program
Director exclaimed [13], “We were not as smart as
we thought we were! Develop and maintain a strong
integration team throughout the program life cycle.
Empower integration to challenge the elements and
program on issues of design flaws and interaction
between the elements.” Strong integration is relevant
and required from both technical and leadership
perspectives. Technically, strong integration requires
tools and techniques that manage the interfaces,
interactions and influences between the parts of the
system. From a leadership perspective, program
integration and project engineering should be staffed
with respected peers who have the courage to tackle
issues. It is safe to infer from these and other lessons
that neglect of strong integration (via people and
engineering tools) has a significant impact on costs
and schedule.

It is in the same manner that we focus on
functional analysis as a means of coordinating the
actions of large and diverse organizations for space
exploration. This section will address functional
analysis as a partial solution to heterogeneous
program integration, the theoretical advantages of
functional analysis, various approaches to developing
an inter-functional architecture, as well as the pitfalls
which may be encountered. The consequences of
neglecting functional analysis at the program level
will also be discussed.

A. A Partial Solution for Heterogeneous
Exploration Program Integration

Most of the lessons learned from previous space
exploration programs have been clustered into
categories generally termed “management/
leadership” and “technical”. Both categories are

complementary and both are required to achieve
program end product success. Functional analysis,
particularly at the program integration level, appears
to provide part of the solution that enables strong
product integration. This is because functional
analysis efficiently bridges the gap between system-
level requirements (what is holistically wanted from
the system) and lower-level project implementations.
Functional analysis at the system level (for long term
space exploration ventures) is usually technology-
independent which means it is an excellent tool for
guiding product behavior over an extended life cycle.
Given the unpredictability and uncertainty involved
with space exploration, functional analysis is also
evolvable and traceable vertically (from program to
project and vice-versa) and horizontally (from project
to project via a higher-level functional allocation).
When implemented with sound engineering
principles, functional analysis can provide increased
costs savings (compared to political or ad hoc
interface management) as well as efficiencies in
communication which positively impact schedule.
Functional analysis effectively serves as a technical
communications tool between the program and the
projects.

B. Theoretical Advantages of Functional
Analysis

There are three main advantages to a program that
result from including functional analysis in the
system design process: improved performance of the
organization, reduced risk to the program, and
enhanced safety of the resulting system. These
advantages are theoretical in the sense that there is a
train of logic that leads one to expect the advantage,
but these advantages have not, to our knowledge,
been experimentally verified. There have been some
anecdotal reports of success which we will point out,
and there is also a large body of both experimental
and anecdotal information that supports the converse
assertion: that there are disadvantages to omitting
functional analysis.

1. Performance Advantages

One important measure of the performance of a
program team is the accuracy of its cost estimates. In
a study carried out by the NASA Space Propulsion
Synergy Team (SPST), it was found that controlling

the lifecycle cost of a launch vehicle depended
heavily on having a complete definition of the
requirements at the beginning [14]. Also, among the
most common factors for failure of software projects
is an inaccurate estimate of needed resources [15].
The accuracy of a cost estimate depends to some
degree on the completeness of the requirements; that
is, if requirements are missing, they will not be
included in early cost estimates, setting the stage for
an upward trend of the estimate over time. The SPST
recognized, and we independently recognized, that a
functional analysis is essential to finding all the
requirements. One reason is that the top-level system
requirements, even if they happen to be complete,
only express the requirements on the system as a
whole. They do not express derived requirements
that result from relationships between physical
subsystems. Another reason is that the top-level
requirements do not express derived requirements
that result from relationships between functions, e.g.
the need for communication functions to prioritize
certain kinds of control or fault management data, or
for power and thermal management to consider the
constraints imposed by vehicle pointing for
propulsion. The functionally-derived requirements
can be significant drivers on both system cost and
engineering cost, and they can only be found using a
functional architecture.

Another important measure of the performance of
a program team is its rapidity of converging to a
solution. If a system were decomposed only along
spatial lines, as is often done, it is easy to get insight
into the physical relationships between the
subsystems. It is much harder to get insight into the
functional relationships starting from only a spatial
decomposition. Our experience with the
Constellation program was that functional
relationships could be discovered eventually, starting
from a purely spatial decomposition. The process
used was to allocate high-level requirements to
subsystems, synthesize subsystem designs, take note
of their dependencies, organize the dependencies into
functional clusters, analyze the functions to
determine the functional relationships, and only then
update the subsystem requirements to include the
functionally-derived ones. However, this was a very
long and expensive process in terms of personnel
and time. The same thing could have been
accomplished directly, in a shorter time, by starting
the requirements analysis at the top level using a

functional decomposition in parallel with the spatial
one.

A program team using functional analysis will
often encounter design situations where they
recognize that the same function must be performed
in many different locations, typically having to do
with a distributed function such as communication,
data management or fault management. This is an
opportunity to introduce commonality into the overall
system design so as to achieve a superior solution in
terms of cost and complexity.

Interface development can be aided with the use
of a system-level functional analysis. The cross-
subsystem functions, once understood, set
requirements on the partial functions allocated to the
subsystems. In turn, these define expectations on the
interfaces that must be met if the top-level functions
are to be realized. These expectations become
interface requirements that can be stated as a target
for the subsystem to meet. This method avoids the
substantial time required for projects to discover
otherwise unknown interface requirements through
their own mutual interaction, and is usually less
costly.

Fault management also benefits from functional
analysis. Fundamentally, fault management has to
make decisions about which functions to preserve in
the event of a fault. Fault management analyses are
often linked and interdependent with hazard analyses
efforts with respect to must-work and must-not-work
functions. So, of necessity, a fault management
analysis depends on a functional analysis in its quest
to determine which functions to preserve in the event
of a fault. In the absence of an explicit functional
analysis for the top-level system, the functional
management effort has to perform a functional
analysis of its own. This, however, is often done
incompletely and solely for the purposes of fault
management. The results can be 1) excessive time
spent on fault management design while the
functional analysis is being completed; 2) incomplete
functional analysis, or 3) inconsistent functional
analyses across disciplines. Overall engineering costs
should be less by performing a single complete,
consistent functional analysis for use by all technical
disciplines.

Use of a functional decomposition at the top-level
can help a program escape a peculiar trap when it
comes to designing physical systems to match

operations roles, and vice-versa. This trap is
organizationally enticing because it gives the illusion
that managing the people is the same as managing the
operation. At the top-level, spatial boundaries
inherently separate machines from human operators.
The top-level owner, either the program manager or
the system engineer, becomes responsible for
managing the engineering transactions between the
people (the machine engineers and the operations
engineers). On large programs, the traffic between
the people often overwhelms the manager who
subsequently neglects the management of lower-level
details. Under this circumstance, essentially no one is
managing the match between human and machines.
The way out of this trap is to use functional
boundaries that keep both machines and operators
together. An engineer given authority within the
function can then define the allocation of sub-
functions between machines and operators, and make
sure that they play together effectively.

We believe that the greatest organizational
performance advantage offered by functional analysis
is the ability to exactly define the top-level
engineering responsibility, authority, and
accountability. The cross-project functions are those
things that make the top-level system more than the
sum of its parts. The cross-project functions are the
reason for having a top-level system rather than
merely a loose assemblage of subsystems under the
care of a custodial parent organization that has little
say in their development. The top-level organization
is responsible for defining the cross-project
functions; has authority over their design,
verification, and integration; and is accountable if the
cross-project functions are not realized. If only a
physical decomposition is used, there is no concrete
representation of the cross-project functions, and the
top-level organization is at an extreme disadvantage
in trying to create them. In fact, there is little the top-
level organization could point to as its unique role
beyond physical assembly, and even that could be
delegated to one or a few of the projects. There
would be nothing to design, and anything further in
terms of controlling budget, schedule, performance,
or risk would duplicate what the projects could do for
themselves. Conversely, a concrete representation of
the cross-project functions facilitates communicating
goals, allocating requirements, and verifying the
overall system.

2. Risk Advantages

Every program faces the risk that it will make
errors that create gaps, duplications, and
inconsistencies in the system architecture early in the
design process. If the team is not aware of
functionally-derived requirements, then analysts
cannot detect functional errors in the architecture,
with the result that the errors persist into the final
product. Such errors will not be found until the
system validation process which occurs very late in
the development cycle. The errors can be corrected
at that time, but at higher cost than if detected early.
Thus, being able to discover functionally-derived
requirements is important in correcting errors during
the design phase. Indeed, many requirements-driven
errors can be found using functional analysis without
any investment in testing, development, simulations,
or even the system design process. This makes it less
costly than other techniques to overcome
requirements errors.

The integration phase is often the time that latent
errors are discovered. With a spatial decomposition,
integration of the system can begin when the spatial
subsystems are complete. When subsystems are
connected, the system-level functions exist for the
first time, and tests on them can begin. The down
side is that failures of the system-level functions are
discovered in a high-cost environment, with all
machines and all teams up and running, often in a co-
located scenario under severe time constraints. As an
alternative, top-level system functions can provide
useful integration insights due to the way functions
are bounded. One system-level function can be
assembled at a time using partial versions of the
spatial subsystems as they become available, using
only as much co-location or system fidelity as is
needed to verify that particular function. If extra
instances of the partial subsystems are available, the
integration of single functions can be done in parallel.
The early testing of system-level functionality
increases the level of confidence that the full system
will be integrated successfully.

3. Safety Advantages

An issue common to all safety analyses is whether
the analysis is complete. If only physical
components are considered, then only physical
hazards can be addressed. Addition of a functional
analysis enables identification of functional hazards
as well as hazards that are physically obvious. In the

case of integrated hazard analysis on the
Constellation program, identifying the complete set
of must-work and must-not-work functions was
critical to providing a complete set of hazard
mitigations because distributed systems must be
analyzed for hazards in terms of the functions that
rely on them [16]. Using a companion functional
hazard analysis, we found a number of otherwise-
unrecognized hazards, which completed the hazard
list. Once these were identified, a set of hazard
controls were developed to mitigate the known
hazards. Completeness can be judged against the list
of known hazards, and dependability cases can be
constructed to prove completeness of the analysis
[17, 18]. Certification of readiness is then
straightforward: if the logic of the dependability case
is correct, then the system is dependable for the
intended use and can be certified given the
verification evidence.

A final safety advantage may be available in
some circumstances: finding system solutions that cut
down on physical redundancy, but that still meet
safety requirements. The risk in physical redundancy
is common cause errors. When a common defect is
found in one physical component, confidence is lost
in all similar physical components. Functional
redundancy can be viewed as a mitigation against
common cause errors because it increases the
robustness of fault tolerant designs by increasing
dissimilar legs of redundancy. Additionally,
functional redundancy also provides
cost/volume/weight advantages. For example,
suppose that having accurate time on a system clock
is critical to the safety of a space vehicle. Rather
than carrying a number of physical clocks, the
navigation function may be able to determine time
from external observations.

C. Approaches to Development of an Inter-
Functional Architecture

We have observed three successful approaches to
developing inter-functional architectures.

1. Fiat Approach

In the fiat approach, a set of functions is asserted
by the analyst. This can be done top-down, asserting
a decomposition and then from that deriving the
relationships between the functions. Alternatively,

this can be done bottoms-up, in which the analyst
asserts a composition from known sub-functions. In
either direction, the analyst may refer to functions as
expressed by customers or suppliers of the system
under consideration, or may refer to previously-
identified design patterns such as the Hatley-Pirbhai
template [19].

2. Use Case Approach

In the use-case approach, the analyst identifies
scenarios describing the system operation using
actor-verb-object statements. The verbs are then
analyzed to identify functional decomposition (or
composition).

3. Temporal Approach

In the temporal approach, the analyst describes
the system operation using required timelines of
events. The analyst then identifies transformations
that must occur between events. The transformations
are used to generate a candidate set of functions,
which then may be organized as either a
decomposition or a composition (see comment on the
pitfall of temporality below).

D. Pitfalls in Functional Analysis

1. Failure to Consider Alternatives

The first functional architecture found is rarely the
best. Buede [4] recommends trying alternate
decompositions, disaggregating the functions
differently, bundling and unbundling transactions
differently, re-evaluating functional dominance in
terms of feedback and control, catching interface
errors. Of course the judgment of “best” is a
problematic issue, but some reasonable factors to
consider are sufficiency for the problem space,
interface balance, freedom from gaps and undesired
overlaps, complexity of mapping to the physical
decomposition, and verifiability.

2. Temporality

Particularly when following the temporal
approach, it may be tempting to make a one-to-one
identification between periods of activity and the
functions. To see the consequence of succumbing to
this temptation, consider an elevator system. One
potential timeline for the system might be:

Passengers request use of the elevator

Elevator goes to the first floor

Passengers ingress car on the first floor

Elevator goes to the second floor

Passengers egress car on the second floor

…

Elevator goes to the top floor

Passengers egress car on the top floor

Using a strict identification of activity into
function, the functions would be:

Request use

Go to first floor

Ingress first floor

Go to second floor

Egress second floor

…

Go to top floor

Egress top floor

There are at least three deficiencies of the
resulting set of functions. Perhaps the most obvious
is that there are too many nearly identical functions;
“go to floor” would be more useful than “go to floor
N”. The next deficiency is that the timeline only
expressed one possible sequence of operation. There
are many possible sequences for an elevator to
execute, so the timeline does not express that
possibility well. This is very typical of “happy day”
analyses that ignore the possibility of error conditions
that require the system to execute contingency
sequences. The third deficiency is that many
functions are missing: support of riding passengers,
emergency communication, or maintenance are a few
that come to mind. It is usually necessary to go back
and consider alternative decompositions after starting
on a temporal approach to alleviate these kinds of
deficiencies.

3. Excessive Abstraction

In the functional decomposition or recomposition
processes, functions can become too general or
obscure to be used as meaningful kernels of
allocation, integration, or testing later in system
development. The functions should be checked to
ensure that they make sense for the later uses.

4. Poor Timing

The work of functional analysis can be
intellectually challenging or unfamiliar, and as a
result can end up taking too long considering the
surrounding program constraints. The work of
functional analysis should keep up with the
prevailing schedule, making contributions to the
surrounding development effort as increments of
understanding appear. On the other hand, work that
is done too soon may lack ability to influence
decisions when they are eventually made (decision
makers may not, or may not know how to, use the
artifacts resulting from functional analysis).
Discussion of functional analysis results is most
fruitful in the context of an active design process.

E. The Consequences of Neglecting Program-
Level Functional Analysis

The consequences of neglecting program-level
functional analysis can be measured quantitatively as
well as qualitatively. Quantitative measures include
increased costs and expanded schedules. Qualitative
measures include nonproductive and ineffective use
of resources due to misexpectations and
miscommunications between program teams.
Because of the surrounding reality of changes of
direction (in terms of funding and guidance), the
exploration program often received significant
impacts in unexpected and inadvertent ways. NASA
leadership just recently released a compilation of
Constellation lessons learned [20] where they
focused primarily on nontechnical challenges.

One of the unintended impacts on the
Constellation program occurred at the very beginning
during the start-up phasing between the projects and
the program.

“Two of the primary projects, the Orion
Crew Exploration Vehicle and the Ares Crew
Launch Vehicle, were begun well in advance

of the Constellation Program. This enabled
rapid start-up and early results from each
project. They functioned for some time without
an integration function between them...These
factors led to costly contract changes when the
appropriate level of integration for a complete
architecture was better understood. This
approach also provided an additional
integration challenge. The projects had formed
requirements, budgets, design approaches,
acquisition strategies, etc., that needed to be
integrated retroactively. The late addition of
the integrating functions had a long-term effect
that was not fully resolved by the end of the
program. Strategies that were in a collective
self-interest for the program were
extraordinarily difficult to implement due to
the cost of contract changes...Moreover,
integrated analyses by the program uncovered
technical issues that could have been caught
earlier (and been resolved in a more efficient
manner) if the start-up timing had been
different. Incentives on contracts were
developed primarily to benefit each project
rather than the overall program. Missing were
incentives for contractors to participate in
technical solutions that benefit the integrated
program. This drove results that were less than
optimum, and sometimes not mutually
compatible” [20].

One of the technical issues (not mentioned in the
report) that had a delayed effect on the program was
the deferred use of functional analysis during early
stages in the program life cycle. Though a partial
product had been developed, the impact of deferring
functional analysis was not noticed for a number of
years which significantly impacted cost and schedule
due to retroactive rework. Only after progressing
toward the end of the preliminary design was it
manifest that multiple program-level teams were
experiencing difficulty in justifying a complete end-
to-end integrated story. Even though program
requirements were traceable to the projects, there was
difficultly in consistently translating the requirements
into actions and difficultly in determining if there
were gaps or missing system-level functions which
led to (in some cases) omissions of duties and
unnecessary redundancies between program-level
teams. In due time, program-level teams identified
the need for a complete end-to-end functional

analysis. This issue, however, was not fully resolved
by the end of the program.

Without a functional analysis, it may be difficult
for a program to converge to an acceptable system
design, to recognize opportunities for commonality,
to identify gaps in contracts with vendors for
subordinate systems, to avoid discovering unintended
emergent behaviors or major errors late in the
lifecycle, to manage the human-machine interface, to
identify system-level verification and validation
criteria, or to certify that its system is safe. If any of
these difficulties are encountered, we would suggest
looking back over the history to see whether a
functional analysis was done; if not, it is essential to
complete one before such situations can be corrected.
Of course, it is undesirable to go without the benefits
of performing functional analysis early, but to some
extent, functional analysis can be performed later in
the life-cycle for emergency redesigns of the program
or the system.

The absence of a functional analysis is likely to
produce a situation where the top-level engineering
organization is not aware of the emergent qualities
introduced by the interactions of the system
components. The organization may erroneously come
to the conclusion that the top level has no legitimate
engineering function, and managerially has no reason
to exist beyond double-checked accountability
imposed on the lower-level organizations. The
sequel is a self-fulfilling prophecy, in which the
organization believes there is no need for system-
level qualities, and the final product ends up having
none. Essentially, this situation is an abrogation of
the entire concept of systems engineering.

IV. Conclusions
As NASA evolves its human space exploration

capability to include diverse partners, there is an
increased need to integrate and effectively allocate
responsibilities between government and commercial
stakeholders to achieve coordinated results. The
system engineering and integration technique of
functional analysis will provide performance, risk,
and safety advantages to such a large-scale
government-commercial partnership by helping to
manage the interfaces, interactions and influences
between diverse components and heterogeneous
players. Lessons learned from the Space Shuttle and
Constellation programs all attest to the sustained need

for strong program-level functional integration across
the life cycle as a means of achieving mission success
within cost and schedule constraints. For large-scale
exploration programs, there needs to be a paradigm
shift away from a tendency to see cost and schedule
as separated from the way the organization goes
about realizing the end product (via people or the
technical end product). The organization (of the
people and the end product) and the methods by
which the product is integrated both have direct and
indirect effects on cost and schedule. Functional
analysis is an effective solution that can both improve
and clarify the connections between costs, schedule
and organization of the technical effort.

References
[1] FY 2012 Complete Budget Estimates, National
Aeronautics and Space Administration, NASA
Headquarters, Washington, DC, February 14, 2011,
http://www.nasa.gov/pdf/516675main_NASAFY12_Budget_Esti
mates-508.pdf [accessed 2 Aug 2011].

[2] Systems Engineering Fundamentals,
http://www.dau.mil/pubs/pdf/SEFGuide%2001-01.pdf
[accessed 25 Aug 2011], Defense Acquisition
University Press, 2001, page 31.

[3] Guerra, Lisa, Space Systems Engineering:
Functional Analysis Module; Department of
Aerospace Engineering at the University of Texas at
Austin, Austin, Texas, 2008,
http://spacese.spacegrant.org/index.php?page=functional-analysis
[accessed 3 Aug 2011].

[4] Buede, Dennis M., The Engineering Design of
Systems – Second Edition, p. 214, Wiley, 2009.

[5] DoD Architecture Framework v. 1.5, Vol. I, Dept.
of Defense, Washington D.C. 23 April 2007,
http://www.health.mil/Libraries/Captions/DoDAF_Volume_I.pdf
[accessed 4 Aug 2011].

[6] IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems, Figure 1,
IEEE Std 1471-2000, IEEE Standards Association,
Piscataway, N.J., 21 September 2000,
http://standards.ieee.org/findstds/standard/1471-2000.html
[accessed 4 Aug 2011].

[7] Browning, Tyson R., “Applying the Design
Structure Matrix to System Decomposition and
Integration Problems: A Review and New
Directions”, IEEE Transactions on Engineering
Management, Vol. 48, No. 3, August 2001,

http://www.nasa.gov/pdf/516675main_NASAFY12_Budget_Estimates-508.pdf
http://www.nasa.gov/pdf/516675main_NASAFY12_Budget_Estimates-508.pdf
http://www.dau.mil/pubs/pdf/SEFGuide%2001-01.pdf
http://spacese.spacegrant.org/index.php?page=functional-analysis
http://www.health.mil/Libraries/Captions/DoDAF_Volume_I.pdf
http://standards.ieee.org/findstds/standard/1471-2000.html

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=946528&tag
=1 [accessed 4 Aug 2011].

[8] Whitcomb, Clifford and Szatkowski, John,
Functional and Physical Decomposition for Ship
Design, Symposium paper, Massachusetts Institute of
Technology, Cambridge, MA, 21-23 March 2000.

[9] Rhatigan, J. L., Hanley, J. M., and Geyer, M. S.,
“Formulation of NASA’s Constellation Program,”

NASA SP-2007-563, NASA Johnson Space Center,
Houston, Texas, October 2007.

[10] Morris, A. T., and Massie, M. J., “Structuring
the Organization for Large Scale Integrated Hazard
Analysis,” AIAA Infotech@Aerospace Conference,
St. Louis, Missouri, 29–31 March 2011.

[11] Santayana, George, Life of Reason, “Reason in
Common Sense,” Scribner's, 1905, page 284.

[12] Zapata, Edgar, Levack, Daniel J. H., Rhodes,
Russel E., Robinson, John W., “Shuttle Shortfalls and
Lessons Learned for the Sustainment of Human
Space Exploration”, 45th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, Denver, Colorado,
August 2-5, 2009, AIAA 2009-5346.

[13] Bejmuk, Bo, “Space Shuttle Integration Lessons
Learned - An Insider's View,” The Boeing Company,
April 5, 2006.

[14] Robinson, John W.., “Controlling Launch
Vehicle Life Cycle Costs”, Aerospace America,
October, 2010.

[15] Charette, Robert M., “Why Software Fails”,
IEEE Spectrum, September, 2005.

 [16] Morris, A. T., and Massie, M. J., “Analyzing
Distributed Functions in an Integrated Hazard
Analysis,” AIAA-2010-3486, AIAA
Infotech@Aerospace Conference, Atlanta, Georgia,
20–22 April 2010.

[17] Weinstock, Charles B. et al., Dependability
Cases, Technical Note CMU/SEI-2004-TN-016,
Carnegie-Mellon University Software Engineering
Institute, May 2004.

[18] Goodenough, John B., and M. Barry,
“Evaluating Hazard Mitigations with Dependability
Cases”, AIAA 2009-1943, AIAA Infotech
@Aerospace Conference, Seattle, Washington, 6
April 2009.

[19] Buede, Dennis M., The Engineering Design of
Systems – Second Edition, p. 214, Wiley, 2009,
figure 7.3.

[20] Rhatigan, Jennifer L., Neubek, Deborah J.,
Thomas, L. Dale, and Stegemoeller, Charles,
“Constellation Program Lessons Learned; Volume I:
Executive Summary,” NASA SP-2011-6127-VOL-1,
Johnson Space Center, Houston, Texas, June 2011.

Acknowledgements
We would like to thank Mahyar Malekpour of

the NASA Langley Research Center, Michael Massie
of the ARES Corporation, Houston, Texas, as well as
Ron Morillo and Lorraine Fesq of the Jet Propulsion
Laboratory for their helpful comments and
discussions in the development and critique of this
paper. The research described in this publication was
carried out in part at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract
with the National Aeronautics and Space
Administration.

30th Digital Avionics Systems Conference

October 16-20, 2011

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=946528&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=946528&tag=1

