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component	parameter	variations,	and	the	capability	to	
realize	 sophisticated	 control	 algorithms,	 digital	
systems	 can	 be	 hardened	 more	 easily	 against	
radiation‐induced	errors	than	its	analog	counterparts	
[11].	 A	 digital power solution also offers observability, 
re-configurability, better fault management, and 
monitoring of system degradation. It has the advantage of 
having a convenient design flow with automated layout in 
standard process design kits (PDKs), resulting in the 
possibility of developing cost-effective, single-chip 
solutions as a reliable alternative to hybrid converters or 
linear regulators.  

The proposed work presents the first digitally controlled, 
programmable POL regulator, suitable for next-
generation, distributed flight power systems as an 
alternative to hybrid dc-dc or linear converters. A novel 
digital control scheme that helps minimization of SEE-
induced transient effects, unlike analog converters, is 
proposed. The POL regulator has been designed, 
fabricated, and tested, and its characteristics are defined 
by a 5 Volt (± 20%) input voltage, 1–4.5 regulated output 
voltage, high efficiency (peak efficiency at 94%) and 
power of up to 5 W. The design was fabricated in the 
AMI i2t100 0.7 m complimentary, metal-oxide 
semiconductor (CMOS) process. The SET hardness of 
this approach is experimentally validated using the pico-
second pulses laser system at the Jet Propulsion 
Laboratory.  

II. POINT-OF-LOAD ARCHITECTURE AND 

DESIGN 

1. Design of the Scalable DC-DC Converter Module  

Fig. 2 shows the schematic representation of the 
converter module with direct main power connectivity 
and adaptive digital control. The converter is configured 
in voltage control mode, where a proportional integral 
derivative (PID) compensator computes the required 
pulse duty cycle based on the difference of the digitized 
DC-DC feedback voltage VFB and reference voltage VREF. 
A 9-bit delay-locked loop (DLL)-based, digital pulse-
width modulator (DPWM) generates the desired duty 
cycle. The digitization is carried out by digitally intensive 
frequency domain  analog-to-digital converters 
(ADCs). The ADC is composed of a voltage-controlled 
oscillator (VCO) followed by a first-order ΔΣ frequency 
discriminator (ΔΣFD) and a cascaded integrator comb 
(CIC) decimator [12]. The digital feedback loop is 
designed with a cross-over frequency of 50 kHz and a 
switching frequency of 500 kHz.  

The digital control system operation is as follows: After 
voltage-to-frequency conversion using ring-oscillator-
based VCOs, single-bit sigma-delta ( modulated 
feedback signals are compared to the  modulated 

analog voltage reference. The 3-level, first-order  
noise shaped error signal is then decimated using 2-stage 
comb (CIC) filter and applied to the compensator (PID) 
input as a 9-bit digital code. The 9-bit PID compensator 
computes the required duty cycle. Finally, the DPWM 
converts this voltage command into a duty cycle to drive 
the PFET and NFET via a built-in, non-overlap, dead-
time gate driver. The implementation of the converter 
architecture is based on the following modules: 
 Digitally controlled DC-DC converter: A digital 
PWM DC-DC buck converter utilizing a first order 
based frequency discriminator (FD) is the core 
converter for this IC. A frequency discriminator generates 
an accurate representation of an instantaneous frequency 
of a carrier signal.  
 Digital PWM generators: A coarse and fine scheme is 
used to generate the high-accuracy PWM duty cycle. The 
coarse scheme uses a counter-based approach, while the 
fine control is through a high-accuracy, phase-locked, 
digitally controlled ring oscillator, i.e., DLL. This DLL 
controls the 4 fine bits of DPWM codes.  
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Fig. 2. Proposed DC-DC buck converter architecture with lossless 
load current sensing circuitry. 
 
Fig. 3 shows the overview of the implementation. This 
approach avoids missing codes and ensures monotonicity. 
 

 

Fig. 3. Schematic representation of the digital pulse-width modulator 
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