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NQ% Why Optical Communications?

»10 X to 100X increased deep space data
returns over present RF communications

* Increased science data return
 "Virtual Presence”
* Public engagement

10X Increasedjimaging
Resolution for
Astrophysics

Future Advanced Instruments

Human Exploration Beyond
Low-Earth Orbit

10X Increased Resblutlon Imaglng fbr Earth Science Tele-Presence with Live HiDef Video
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Deep Space Optical Scenario

REQUIRES:

Can be in field of view
Primary source of
opftical noise

Downlink \

. _Stabll_lzed by dlsturbar_lce Point-AheadAngle
isolation system & uplink . Depends off the
beacon tracking of thearth's velocty

« Gb/s return link data I e 1o he

* Ranging

spacecraft
# Can be many beam
widths in deep space

. J/ REQUIRES

oty . * Multi-kW power uplink lasers

» > 10 m optical receiver apertures
 Efficient downlink detectors

Earth at
T,+#RTLT _
Uplink
 Blind points to spacecraft
 Aids downlink pointing
— Reference for removal of S/C jitter
— Reference for point-ahead angle

 Mb/s forward link data

Earth _
at T, * Ranging

Sun + Stable / isolated platform

« Efficient uplink detector

» Efficient PPM transmit laser
» Sub-microradian pointing

Space Transceiver (ST)

Large distance
Large 1/R? range loss
Large 2R/c round-trip light time
(RTLT)

Deep space optical
communications improves
over RF performance by:

* Pointing: Narrow beams from
small transmit apertures deliver
more power "on target”

Beam Width = Wavelength / Antenna
Diameter

» Detection: Efficient and high rate
photon counting "makes every
photon count"

The optical channel is not thermal
noise limited
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» A single detector plane minimizes
beam alignment errors and optical
losses due to splits

— Must form an accurate estimate of the
location of the dim laser beacon to point
the transmit beam to the Earth receiver
location

— Must track the angle of the transmit beam
to confirm the point-ahead angle

— Handshaking with the Earth receiver to
confirm pointing in real time is not possible

Simulated image
of Earth crescent
with laser beacon
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Fans

Nasa  Acquisition, Tracking, and Data Deteétor

Receive Spot

‘* Beacon Uplink Receiver | | pata
Centroiding (clock & data)
* TX Spqt - Tracking |, POINTING
/ Centroiding Process CONTROL

Transmit/ t
Spot Full Frame Image
(for acquisition)

Point-Ahead
Region
« Single focal plane receiver architecture
for simultaneous acquisition, tracking L sy atern
and uplink data demodulation R . - i
— Versus two or three typical for an optical receiver ' —— e ——
design v s ok s e
— Reduces transceiver mass — Increases transceiver —t B
rellablllty 3. High rate data channel

{16-PPM) +25% guard-time

A nested beacon modulation scheme s I‘l

supports background subtraction and
multi-rate uplink data ™ Transmitted signal
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Analog vs. Photon Counting

» A significant limitation on uplink beacon
estimation accuracy is detector noise
— The centroiding performance of an analog focal S .
plane array can be 10 to 100 times poorer than the S Esa i Siasii
shot noise limit due to readout noise

« A focal plane array of single photon detectors
(SPD) can achieve shot noise limited performance
— Operate with10 to 100 times less beacon transmit power

- The SPD array can also increases uplink rate from
< 100 b/s (Si CCD or InGaAs FPA) to multi-Mb/s

— Sub-nanosecond photon arrival timing

Centroid Jitter (radial pixels)

4-Pixel Centroiding Error vs. Signal Counts on Photon-Counting Array |

W 1
@ | w3 cEntroid .3 l
ol : " — L L A LI
= | —y centroid ) i Iy
T — . 1.0 - LT [#0
o shot noise limit Beacon Power Flux at Spacecraft (W/m?)
£ 5k w— InGaAs FPA MSW; all noses; 10 ms itegration
5 | """ InGaAs FPA KTX: all noises; |0 ms integrabion
= 0| === InGaAs FPA XEVA: all noises; 10 ms integration
s l =sm  [mensified InGaAs MOSIR; all noases; 10 ms
2 - Shot Nowse Only: 10 ms
- |
& 2
2.
| ==
a A
& |
6 L 1 L | 1
10 ) = £l * 0
Per Pixel Signal Counts {dB)
SPIE OPC 2011 Jet Propulsion Laboratory ¢ Optical Communications Group 8

Santa Diego, CA for planning and discussion purposes only



Photon Counting Arrays for Deep Space *

Optical Beacon Acquisition and Tracking

* Detector Array Readout
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¥as\ UPLINK DETECTOR COMPARISONS A=

» Representative "State-of-the-Art":

Negative- Linear
Geiger Mode Avalanche Mode
Feedback
RCE-
Technology™*: Si InGaAsP InGaAs InGaAsP | InGaAs HgCdTe
n . . . "o
ecioncy st | oo | e | awe | 2w | 2w | oo The "missing piece" is
the application specific
Blocking Loss 0.3dB 0.8dB (o] 2] 0.1dB 0.2dB .
read-out integrated
Dark Noise /
. 1 KHz 20 KHz 200 KHz 200 KHz - -
pixel circuit (ROIC)
Timing Jitter 120 ps 270 ps 270 ps 240 ps 240 ps 900 ps
Operating 250 — 200- 200-
Temperature 300K ZZVZIN 270K ZZVZIN 270K ELI
DDD 1.3E8 Assumed equivalent to
(+3dB DCR) MeV/g 1.0E7 MeVig Geiger Mode ?
Can Meet 5 yr.
s f Yes Maybe Maybe Maybe Maybe Yes
Mission Life Green — Satisfactory
Yellow — Marginal
Array Size 32x32 256x256 256x256 32x32 32x32 Orange — Not quite acceptable
Red - Unsatisfactory
TRL 34 5 5 3-4 3-4

*Sub-band gap Absorption can be used on Si or InGaAsP sensors to detect a
1550 nm transmit beam for point-ahead verification
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» The focal plane array is composed of “slow” and _ N6+ 20 T
11 1] ' \UP) = 2L glot A sAgd glot
fast” pixels T T WS W i |
— A 2x2 or larger sub-array of fast pixels is located at the ip) —Adown) = 22 Titee — D0ath MR
beacon tracking position (up) + {down) = 8M\yTator + 2Asd )
 When the “slow” counters are alternating between (up) = 4\ Tatot + Aad + ATator )
the “up” and “down” modes, the background rate (down) = ATty —da@+ATatoe |, o o
(up) — {down) = 2.0
has no average effect on the counter state o ; == :[ .
. . wup) + {down) = BApd stor + 2As0 4
— Conversely, if the counters are run in the “up” mode only, the : '

background rates are preserved
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m% Array Read-Out Integrated Circuit

» Parallel processing of all the pixels exceeds the resources
available in current application-specific integrated circuit (ASIC)
and gate array (GA) technology
— Desire for a high fill factor in the detector array also precludes this

* Processing can be distributed across an ASIC and GA through
down-sampling and windowing portions of the detector array

1 Gbis
O SerDes
2
— = > -FT0 or 1 ]
Detee = [ D Front End Pre-Process 1Gbls to up_lmk
tor S e < (FEPP) SerDes receiver
o =
L =
e £
;- z
- One-time Programmable Gate Armay
Bump Bonding
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« Down-sampling: Photon counters read out and cleared at a fixed interval

* Windowing: Samples are decimated at gate array input
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Optical Beacon Acquisition and Tracking

 Path Forward
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NASA Current Status

« Expected performance gains have been confirmed by
simulation models

— Simulation inputs are measured spacecraft vibration data and measured
small array (4x4 and 6x6) detector performance data

« ASIC functionality is presently being prototyped using field-
programmable gate array

— For a 32-pixel "proof-of-concept" demonstration prior to fabrication of a
ROIC for bump-bonding to 32x32 pixel arrays

« An emulation test-bed has been set up to confirm simulation
predictions using incoming photon counting detector arrays

— Shot noise limited tracking performance has been confirmed using a 6x6
GM-APD array

— 32x32 arrays in RCE Si GM-APD, InGaAsP GM-APD, and InGaAs and
InGaAsP NAF technologies will be tested over next 12-18 months
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Nasa - Simulated Tracking Performance

» Use of the square-law up-down counter (UDC) statistic improves
centroiding performance of the uplink beam over conventional
energy detection using up-counters

128x128 array, center located beam, }.,b=1o4 phisipixel, ls=105 phis
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NASA  Summary

« Use of SPD arrays with per-pixel counters instead of traditional
analog detector arrays allows acquisition and tracking performance
at the theoretical limit for precision optical beam pointing

— Required laser beacon power for acquisition and tracking can be reduced by a
factor of 10 to 100, thus motivating detector technology development

— SPD array pixels can have sub-nanosecond timing resolution, allowing for
uplink data recovery or range measurements

« Although continued detector array development is still needed, the
primary "missing piece"” is the application specific read-out
integrated circuit
— Required post-detector functionality can be met by a down-sampling read-out

ASIC followed by a post-processing gate array

The work described here was performed at the Jet Propuilsion Laboratory (JPL), California Institute
of Technology, under contract with the National Aeronautics and Space Administration (NASA)
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