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ABSTRACT   

This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer 
(PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument 
will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved 
outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the 
thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the 
U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for 
the Next Decade and Beyond1. The PanFTS instrument is a hybrid instrument based on spectrometers like the 
Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon 
Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous 
measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate 
optical trains and detectors for the UV-visible and IR spectral domains. This allows each side of the instrument to be 
independently optimized for its respective spectral domain.  The overall interferometer design is compact because the 
two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as 
well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, 
thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been 
tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and IR. It 
is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) 
observatory on Mt. Wilson measuring the atmospheric chemistry across the Los Angeles basin.  Development has begun 
on a flight size PanFTS engineering model (EM) that addresses all critical scaling issues and demonstrates operation 
over the full spectral range of the flight instrument which will show the PanFTS instrument design is mature. 
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1. INTRODUCTION  

The Panchromatic Fourier Transform Spectrometer (PanFTS) is an imaging spectrometer based on a classical Michelson 
interferometer that incorporates several unique features. It can measure pollutants, greenhouse gases, and aerosols as 
called for in the Decadal Survey and the NASA Science Plan. With continuous spectral coverage from the near 
ultraviolet (0.26µm) through the thermal infrared (15µm), PanFTS is designed to meet and exceed all of the science 
requirements for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission.  

From geostationary orbit PanFTS can map all of North and South America every hour with high resolution 
measurements (temporal, spatial, and spectral) that capture diurnal variations in pollutants, aerosols, greenhouse gases, 
and transport tracers. These measurements will improve the understanding and prediction of rapidly evolving 
tropospheric chemistry which influences air quality and climate change.  

Figure 1 shows the molecular species atmospheric absorption spectral bands relevant to the mission. The wide spectral 
coverage is important for retrieving the entire suite of GEO-CAPE target molecules, including several in widely different 
wavebands. Measurement of the same species in different spectral regions significantly enhances the information content 
of the vertical profile retrievals2.  By measuring the spatial and temporal variation of these molecular concentrations in 
the atmosphere, the science data products will be extremely valuable to the research community and to operational 
agencies, such as NOAA and USEPA, which are responsible for developing effective air pollution mitigation strategies.  
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minimize instrument self-emission and detector readout electronic noise.  Low thermal self-emission is essential to 
achieve the sensitivity needed to measure thermal emission radiation from the earth’s atmosphere.  

 

Figure 2.  The PanFTS flight instrument functional block diagram 
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5. CONCLUSION 

PanFTS is designed to meet and exceed all of the GEO-CAPE mission objectives. The instrument is an imaging 
spectrometer based on a classical Michelson interferometer that incorporates several unique features. The wide spectral 
coverage from near ultraviolet to thermal infrared are spatially separated between the two sides of the OPDM, which 
allows the channels to be independently optimized. Two advanced technologies, the OPDM and the 128x128 all digital 
FPA with in-pixel digitalization have demonstrated the capabilities needed for PanFTS. These technologies will be 
incorporated in a flight size PanFTS EM instrument that will demonstrate simultaneous IR and Vis measurement 
capability under space flight like environmental conditions.  This will demonstrate that critical design requirements have 
been achieved and show that the PanFTS design is mature and ready to be implemented in a flight instrument. 
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