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@ Adaptive-feedback receivers
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@ Optical communication at the quantum limit
I
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* Light is fundamentally quantum mechanical
 Measurements inherently yield random observations

« Statistics of measurement outcomes determine channel
capacity
« The ultimate capacity of optical communications must
therefore optimize over...
— ...the alphabet of optical states
— ...the priors for the optical states
— ...the measurement at the receiver




Single-mode free-space capacity limits

* Dimensional information efficiency: ¢4 = C/l?\
— units: bits per dimension

 Photon information efficiency: ¢, = C/E —

capacity in bits per

channel use

N\

— units: bits per unit-energy (photon)
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@ The Dolinar receiver
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 Input state is one of two coherent states for 0 <¢ < T
— |*bo) with probability £ , and |+, ) with probability 1 — ¢ (£ < 1/2)

» Local oscillator field is |ci1o(t))

— chosen to minimize the probability of error in distinguishing the two

states in the next increment

more likely
hypothesis

ML decision rule at the end of the observation interval:
— if even number of photon-arrivals observed, then choose |¥1)
— if odd number of photon-arrivals observed, then choose |[10)




@ Minimum probability of error measurement
I

* Binary asymmetric channel with cross-over probabilities
being a function of the apriori probabilities

(more likely) (+) 1 —¢& P.yen (even counts)

(less likely) (—) &

P,qq (0odd counts)

1 1—2€s o1 1-2(1-¢)s . 9
Poven = 2 <1+ \/1_45(1_5)3> Foven = 2 (1 \/1—45(1—€)s> S = |<¢0|¢1>|
* The probability of error meets the Helstrom lower bound

— lowest probability of error quantum mechanically permissible in
distinguishing two coherent states

Pe:‘spe;en_'_(]‘_f)PoTid:%(l_\/1_4£<1_§)3)




@ General formulation
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Input signal a(t) =a; for0 <t <T; ape€C, k=1,....K
— normalized such that «(t) has units /photons/s

— g has apriori probability g«

Local oscillator ai,(t) displaces incoming field

— a10(t)is normalized to have units \/Photons/s

Photodetector is ideal
— oo-bandwidth, unity quantum efficiency, and no dark counts

N(t) is a conditional inhomogenous Poisson counting process
with rate Ax(t) = |au + cuo ()]




@ Differential mutual information

* The maximum rate of reliable information transfer is

C' = max I(K; {N(t):t € (OaT]})
{Qk}7alo(t)

« For given{q:x}, the chain rule for mutual information yields

ot . (K N(t+ AT) = N@)[{n(r) : 7 € (0,1]})
mégc)l(K {N(t):te(0,T]}) —/0 dtEn [(1;13)22{) Algprgo AT ]

differential mutual information:i ()

* The differential mutual iInformation for a Poisson process is

iq(t) = —A(t)log A(t) + Zpk (£) A& (t) log Ak (t)
_/ l \)\k(t)z‘@k+alo(t)‘2
A(t) = Zk:pk ()t pr(t) = P(K = k|{n(r) : 7 € (0,4]})

* i4(t) > 0 because —\log A is a concave function




@ Critical points of solution

Assume infinite modulation bandwidth for local oscillator
Denote ayo(t) = a(t) exp(igp(t))

>0
Differentiating 4,(¢) with respect to a, ¢ at each time ¢ gives

> prlog (Ak/X) (a + |ak| cos(é — @) = 0

ap = ]ak\eid”*’

Zpk' log (Ar/A) sin(¢ — ¢x) = 0
k

==

In principle optimal local oscillator can be solved for arbitrary
{ak }, but, in practice difficult to do analytically

— Binary case has analytic solution

— Higher-dimensional cases can be solved numerically

If all{ o, } are aligned on a line, then o, (¢) is on the same line




@ Algorithm for simulating optimal feedback
I

* Incremental form of the solution is suitable for simulation
 [nitialize:

— Choose true hypothesis using apriori probabilities {qx }

— Set pr(0) = qi; choose step size AT
 Repeatform=1,...,|T/AT]

— Find optimal o), (mAT) using px(mAT)

— Simulate whether arrival occurs in next time increment (m + 1)AT

— Update conditional probabilities, px((m + 1)AT) , using Bayes’ rule

* Increase m by one and return to previous steo
¢ =05 | - =
¢-=02 "1 Sample run: "l / ‘
o €T Arrivals /
o Probability evolution —> 17| “




@ Binary signaling constellation

I |
* Assume BPSK input constellation o, € {|a),| — a)}

el .. _ A .
— subscript ‘+’ refers to positive amplitude state with probability p- (0)
with probability p (0) < 0.5

The solution to the optimality equations yields

o(t) = 1 —2py(t)

The probability product evolves deterministically, as

p4(t)p_(t) = p+(0)p_ (0)6_4O‘2t

The closed-form optimal local oscillator solution is
a(—=1)N®
ano(?) (1)

/T —4p, (0)p_(0)e o7
. o . >=1-p.(0)
Local oscillator is identical that of Dolinar Receiver!

0<t<T




@ Capacity of BPSK

 First evaluatingi,(¢), then the mutual information, we obtain

max I (K;{N(t):t € (0,T]}) = ha(p4+(0)) — h2(@)

Ao (t)
Per mm(o)(l - p+(0))e—4a2T>

« Capacity and photon versus dimension efficiency plots
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@ The binary asymmetric channel

* The Dolinar receiver is a hard-decision receiver
— At the end of every symbol, one of two hypotheses are chosen

« The adaptive receiver is a soft-decision receiver

— The receiver is maximizes the mutual information between input and
the output waveform (photon-counting process)

* The Dolinar receiver and mutual-information maximizing
adaptive receiver have the same capacity
— No ‘soft information’ is obtained by resolving the count epochs
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@ The Dolinar receiver: revisited

(more likely) (+) 1 — ¢

Poyen (even counts) 0

0
X Y
1 (less likely) (—) & P,qq (0dd counts) 1

« The mutual information of the binary asymmetric channel is
[(X;Y)=H(X)- H(X|Y)

* The mutual information of the adaptive fe\ei{‘mck receiver is
I(X;Y) = H(X) — ho(Per) —H(X[Y) = hy(Py)

* This holds because p' = and p__  are such that

HXaY|]Y)=HX oY)




@ Arbitrary binary coherent-state constellation
I

« Earlier derivations for BPSK extend trivially to arbitrary binary
coherent states

« Assume the states are {|a1), |a2)}, ai,as € C, and have
apriori probability distribution {q1,1 — ¢1 }

* The optimal local oscillator must be

o = (01 + ) + )
e

optimal local oscillator for the real-valued, and antipodal
constellation{|—|a1 — as|/2), ||a1 — a2|/2)}, and apriori distribution {¢1,1 — ¢1 }

0=/Z(a1 — as)

* Proof is by contradiction




@ A ternary signaling constellation

 Assume ternary input constellation oy € {| — a), |0), |24>}
— subscript "+’ refers to positive amplitude state ~ ».. orobability p_(0) |

— subscript ‘-’ refers to negative amplitude state with probability po (0)
with probability p (0)

* Analytical solution to the optimality equations is intractable,
yet, it can be solved numerically

* As an alternative we propose the following local oscillator
function, whose performance is very close to optimal

1+p_ (t)+p+ ()
alo<t) — {a2(pp(t>pzr_(t>) for f(p‘l'(t))p—(t)) > ()
0

otherwise N
difference of mutual information attained

with the two local-oscillator possibilities

* The first case solution satisfies § [Ti—(_.+) () = =5 [T,—_ .4y Pr(t)
between detection epochs




@ Optimal versus approximate local oscillator

* Difference in i4(t) attained with the optimal and approximate
local oscillators is small, and...
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@ Capacity of ternary constellation

* Photon information efficiency (PIE) versus dimensional

information efficiency (DIE) tradeoff
— Adding the vacuum state overcomes finite PIE asymptote of BPSK

— Better than OOK + photon-counting but gains diminish at high PIE

0

DIE [bits/ch. use]
)

i Gauss. + ult.
= = = (0O0K + ult.
Ter. + FBrec.

OOK + Ph. cnt.
——— BPSK + Dol. rec.

° 10
PIE [bits/photon]

—_—
OI
w

10
10




@ An adaptive-feedback receiver

 Guha et al. (ISIT 2011) use an adaptive-feedback receiver
with for this ternary constellation
— local oscillator is set to zero until a click is registered

— once a photon is detected, the Dolinar receiver is applied in the
remaining duration

inputs coherent
states

each output is {| — ), |0), |a)}
\/’ with apriori probability{q, 1 — 2q, q}
iy
0

Dolinar
receiver

_/ Guha et al. ISIT 2011

_ g (arXiv:1102.1963v1)

==




@ Optimality of adaptive-feedback receiver

« Setting p+(0) = p_(0) in our approximation to the optimal
local oscillator, we find that ay,(0) = 0 is optimal when

g < 0.5¢7% ~ 0.068

* ajo(t) =0 remains optimal as long as N(t) =0

 If an arrival is registered at ¢, po(t7) =0, p+(t7) =3, p_(t7) =1
so the constellation reduces to binary and the Dolinar
receiver becomes optimal adaptive-feedback receiver

 This strategy is optimal for PIE > 2.5 bits/photon

* Hybrid BPSK + Pulse-Position Modulation (PPM), with PPM
order > 3 satisfies ¢ < 0.068




@ Conclusions

« Adaptive-feedback based optical communication receivers for
coherent states are studied in an information-theoretic setting
— local oscillator is incrementally optimized

« Dolinar receiver is the optimal adaptive-feedback receiver in
the binary case
— no soft information

 BPSK+vacuum-state local oscillator can be approximated in
partially-closed form

— “wait for a photon, then apply the Dolinar receiver” is an optimal
feedback strategy when non-vacuum states satisfy g < 0.068

* Analysis framework can be applied, in principle, to arbitrary
coherent-state constellations




