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I. Introduction

A. Relevance to Cassini

Cassini is an international spacecraft mission facilitated by NASA and ESA which seeks to understand the
Saturn planetary system, including rings and moons.! Launched in 1997, the Cassini spacecraft contains two major
components: the Cassini orbiter that has been orbiting Saturn since October 2004, and the European-built Huygens
probe that landed on Titan’s surface in December 2004 to study its geology and atmosphere. Titan, Saturn’s largest
moon and the second largest moon in the solar system, possesses surface and atmospheric features similar to those
of Earth, including lakes, seas, and mountains. A physical characterization of these features is critical to
understanding the origin and evolution of Titan, whose surface composition reflects its geological history. Because
Titan’s atmosphere is largely composed of methane, it is believed that surfaces lakes are filled with mixtures of
liquid hydrocarbons.

The Cassini orbiter’s RADAR instrument has been scanning Titan’s surface at the atmosphere-penetrating
microwave frequency of 13.8 GHz since 2004. However, accurate interpretation of these data is limited by a lack of
knowledge regarding dielectric properties of liquid hydrocarbons at cryogenic temperatures.” Therefore, it is of
specific interest to experimentally determine values for the complex permittivities of various liquid hydrocarbon
mixtures at the surface conditions of Titan. In particular, more accurate values for complex permittivity would
improve estimates of lake depth and surface composition obtained from the instrument’s altimetry and backscatter
modes.

B. Conventional and Extended Cavity Perturbation

Though many techniques have been developed to measure complex dielectric constants, cavity perturbation has
been one of the most popular and successful methods to study low-loss materials. To perform cavity perturbation, a
sample of precise dimensions is inserted into a microwave resonant cavity, and the complex dielectric constant is
computed based on shifts in the measured cavity resonant frequency and the measured cavity quality factor. In this
paper, conventional cavity perturbation refers to a first-order theory developed for a cylindrical resonant cavity
loaded with a low-loss sample limited to no greater than ~2% of the total cavity volume. This theory assumes that
insertion of the sample does not disturb empty cavity fields, which allows loaded cavity fields to be approximated by
empty cavity fields for small sample sizes. Extended cavity perturbation was initially developed to study the
dielectric properties of fragile materials that cannot be prepared into cylindrical rods thin enough for the
conventional method.” Using cavity field expressions obtained by solving Maxwell’s equations with appropriate
boundary conditions at the cavity walls and at the sample-vacuum interface, extended cavity perturbation allows
cylindrical samples of arbitrary size. Both methods are limited to two-region cylindrical cavities, though analogous
techniques do exist for rectangular cavities.

C. Exact Cavity Perturbation

In this paper, we summarize a new patent-pending approach to computing complex dielectric constants of non-
magnetic materials given certain resonant frequency and quality factor measurements.” Exact cavity perturbation
uses equations first derived by Sphicopoulous et al, which compute a theoretical complex resonant frequency of a
cylindrical cavity containing an arbitrary number of radially-stratified regions (ILA).* A theoretical total cavity
quality factor is computed based on empty cavity resonant frequency and quality factor measurements, which
estimate losses in the cavity walls and end plates (I1.B). Because the cavity can contain numerous regions, each of
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different electromagnetic properties, liquid samples contained within a holder of known permittivity and
permeability can be studied. This technique also determines electromagnetic field configurations within the cavity
and at the cavity wall with a sample inserted in the cavity. This has direct application to Cassini science objectives
that require the dielectric constants of liquid hydrocarbon mixtures. Unlike the conventional and extended methods,
which involve direct calculations of the real and imaginary parts of the complex dielectric constant, our
implementation of exact cavity perturbation relies on an efficient numerical root-finding method (III).

II. Overview of Theoretical Computations

A. Theoretical Complex Resonant Frequency Computation

The theoretical complex resonant frequency is computed as a function of cavity parameters, each region’s
electromagnetic properties, and three non-negative integers that describe the normal mode of interest. The first
number, /, represents the number of tangential full periods. The second number, m, represents the number of radial
half periods. The third number, », represents the number of axial half periods. A theoretical complex frequency fis

defined as:
f=r-if
f =1120,),

where Q. is the theoretical quality factor of the entire cavity. Thus, the imaginary part of a complex frequency
simply describes the cavity’s quality factor.

As a simple example, the TM,,,, (transverse magnetic) mode has the following theoretical resonant frequency for
a cavity completely filled (i.e. only 1 region) with a dielectric material:

2 2
f/ _ Cc x/ ,m + n
theoretical 2 \/87: - R ( h ] >
where ¢, is the real part of the complex permittivity of the dielectric material, x;,, is the m™ root of Jy(x) = 0 (Bessel
function of the first kind of order /), R is the internal cavity radius, and / is the cavity height.’ Q. can be calculated
using expressions for the electric and magnetic fields inside the cavity and knowledge of the surface resistance of
the cavity walls.

To describe the method for computing the theoretical complex resonant frequency of a cylindrical cavity with
numerous regions of differing dielectric properties, we use notation introduced in a summary of Sphicopoulos et al.,
written by Jackson®. To calculate the theoretical complex resonant frequency, Jackson defines a fourth-order matrix
S (omitted for brevity) that is a function of cavity parameters, each region’s electromagnetic properties, and the
mode numbers / and ». The theoretical complex resonant frequencies correspond to the roots of the equation:

DetS =0,
where Det is the determinant operator. The theoretical complex resonant frequency of an /mn mode corresponds to
the m™ positive real root of the equation. In our implementation of this computation, we numerically solve this
determinant equation using a built-in root-finder. We specify the mode number m by providing the root-finder with a
complex frequency guess whose real part is sufficiently close to the m™ real root.

The imaginary part of the complex frequency obtained through this computation, however, only represents the
quality factor due to losses in the dielectric sample. The following section will describe how the imaginary part of
this theoretical complex resonant frequency is adjusted to include losses in the cavity wall.

B. Adjustment of Theoretical Complex Resonant Frequency to Include Wall Losses’

Because the theoretical complex resonant frequency obtained in II.A includes only electromagnetic losses within
the dielectric sample, the imaginary part of this complex frequency must be manually adjusted to include wall
losses. This is achieved using the following expression for the theoretical quality factor due to wall losses:

__ oW
Qwall P + P

cylinder endplate

where wg is the measured empty cavity angular resonant frequency, W, is the time-averaged total energy stored
within the cavity’s electric and magnetic fields, Pyinqer 1S the power absorption in the conducting walls, and Peugpiare
is the power absorption in the conducting end plates. W, (omitted for brevity) is a function of the dielectric
properties of each region, which allow electric and magnetic field values to be computed. Peyjinqer is a function of the

2
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tangential component of the magnetic field, Hy,,, at the cavity walls and of the wall’s frequency-dependent surface
resistance R;. Pengpiare is @ function of the time-averaged total energy stored within the cavity’s magnetic fields and
also of Ry. Peyiinder Pendpiate> and R are given below, though Hi,, and Wagneric are omitted for brevity:

F, cylinder — % ” |H tan |dS

wall

— 4Rs
endplate — 7 " magnetic
h-u,
U, R-h
Rs = . ‘f;l:eoretical ) j;) >
0, h+R

where f; and Q, are the measured empty cavity resonant frequency and quality factor, respectively. Then, the total
cavity quality factor adjusted for wall losses is given as:
-1
Qctora/ — l + l ,
Qsample Qwa/l
where Qsampre is the quality factor that corresponds to the imaginary part of the root of equation Det § = 0. With this
adjusted quality factor, we define a new theoretical complex resonant frequency that will be used in further

calculations:
’
- f;heoretical

’ 5 ” ’
f;heoretica/ = f;heoretica/ —1 f;hearetica/ = f;heoretica/ —I (2 Qtota/) .
c

III. Numerical Determination of Complex Permittivity

The procedure described in this section strategically searches through the complex permittivity plane until a
value is found that produces an fycorericar identical to freasures, defined below:

o
P, measured

Y
f measured f measured —1 2
Qmeasured

where [ easured a0d Oueasurea are experimental values for resonant frequency and total cavity quality factor. The
complex permittivity plane is the set of all ordered pairs (g, &), for which ¢’ and &;" represent the real and
imaginary parts of the unknown dielectric constant of the sample region. It works to this method’s advantage that &’
is strongly coupled to £, but weakly coupled to Q. while the reverse is true for &,". This simplifies computations
because, in effect, the complex function

2

4 ’
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can be rewritten as

+ Seorencar ()
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eorelica s N eorelica s ngta (8:)

The procedure described below for numerically determining the sample’s complex permittivity is divided into two
steps. The first step returns a rough guess for the complex permittivity, which is fed into the second step, a complex
root-finding algorithm that refines this guess to arbitrary accuracy.

A. An Initial Guess for Complex Permittivity

To obtain an initial guess for the complex permittivity, a grid corresponding to a finite range of complex
permittivity values is defined in the complex plane. The horizontal (real) axis is defined by the closed interval [&in,
&s'max], Which is divided into discrete steps of width Ae;". The vertical (imaginary) axis is defined by the close interval
[es" min» €' max), Which is divided into discrete steps of width Ae;". Each iteration of this procedure is characterized by
a complex permittivity &, =g’ + i & for which certain theoretical values will be evaluated.

Because f, depends primarily on ¢’ and Qc"””l depends primarily on &,", the first stage of iterations will consist of
incrementing &', with ;" held fixed at an arbitrary but reasonable value until £, is sufficiently close to f casurea- FOr
each iteration, f"yeorericar 18 €valuated and compared to £ easurea- If, in incrementing &', fineoreticar COSSES [ measureds €s' 18
decremented once and the increment is halved to provide greater resolution. This is repeated until an &' is
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!

encountered that produces an fjeorericas €quivalent to feusured, choosing an accuracy of at worst 1 part in 10%. This &,
will be used as the real part of the initial guess for the root-finding algorithm described in II1.B.

An identical procedure is then performed for &;"” (with &’ held fixed at the initial guess just obtained), except
during each iteration, Qc"””l (instead of f"yeorericar) 18 evaluated and compared to Q,ueasures- The imaginary part of the
initial guess for &, is the first value which produces a Q. equivalent to Oyeasured, again choosing an accuracy of at
worst 1 part in 10°.

B. Root-Finder to Determine Final Complex Permittivity

An initial guess for complex permittivity has been determined by requiring that the theoretical resonant
frequency and quality factor corresponding to this initial guess be within 1 part in 10° of analogous measured
quantities. However, more accuracy is required because complex permittivity is very sensitive to measurable shifts
in resonant frequency and quality factor. For convenience, we define a complex function

G(gs) = f measured -ftheoretica/

whose zero precisely corresponds to the permittivity of the sample. Because we will be solving the relation G = 0
numerically, certain real and imaginary null criteria (which are more strict than those imposed for the initial guess
computation) will be specified. Like the initial guess computation, this solving algorithm treats the complex function
Jineorericar @S two single variable real functions, but attempts to minimize G by varying &,"and &;" simultaneously.

First, a rectangle is constructed in the complex permittivity plane, centered on the initial guess (&s'guess> &5 guess)
from III.A. Initially, the dimensions of the rectangle are defined such that width is 1% of &'s,.. and the height is 1%
of &"quess. For subsequent iterations, however, the dimensions of the rectangle may be a different percentage of the
center point value.

41
me ImG=0
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Figure 1. Visualization of Complex Root-Finding Algorithm

The goal of this algorithm is to generate null lines, along which ReG or ImG equals zero. The intersection of
these lines (ReG = 0 and ImG = 0) represents, to a better approximation than the initial guess, a zero of the complex
function G. Assuming the function ReG is locally linear, this function should have a null point on exactly two or
none of the rectangle’s sides. For each iteration, the function G is evaluated at each of the rectangle’s corners. Null
points for ReG occur on sides bounded by comers for which the ReG evaluates to opposite signs. The unknown
coordinate of the null point along a particular side is determined by linearly interpolating ReG between the two
corners. The null line is then determined by connecting the two null points for ReG. An identical procedure for
generating null points and a null line is performed for the function ImG. If, for either ReG or ImG, no null points are
located, the iteration is repeated using a larger rectangle.
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When an intersection point is determined, G is evaluated at that point. The algorithm ends when both ReG and
ImG at the intersection point fall below a null criterion (typically 1 part in 10'") specified by the user. This final
intersection point is the final value for complex permittivity of the sample. If G remains larger than the null
criterion, a new smaller rectangle is formed around the intersection point (see smaller rectangle in Fig. 1), and the
null line intersection determination is repeated.

IV. Application of Technique to Future Experiments

A. Determining Permittivity of Non-Magnetic Liquid Samples (Cassini)

The simplest experiment to determine the permittivity of cryogenic hydrocarbon mixtures relevant to the Cassini
science missions involves a three-region cylindrical cavity. Three separate resonant frequency sweeps using a vector
network analyzer are performed, each with a different configuration of materials. The first sweep (Figure 2.a) is
performed on an empty cavity to gain parameters necessary for computing wall losses. The second sweep (Figure
2.b) is performed on a cylindrical cavity with only an annular non-magnetic quartz holder inserted (Region 2). Exact
cavity perturbation is then used to compute the dielectric constant of the quartz. The third sweep (Figure 2.c) is
performed on a cavity with both the cryogenic liquid sample (Region 1) and the annular quartz holder inserted.
Region 3 consists of free space between the holder and the cavity walls. Exact cavity perturbation is then used to
compute the dielectric constant of the sample.

(a) (b) (c)

4>

Region | —

Region 2 =]

L

Region 3 <

Figure 2. Schematics of cavity configurations for Cassini experiment

Assuming the sample and the holder are non-magnetic, power losses due to magnetic fields can be ignored.
Regardless, arranging the sample close to the center of the cavity further validates this assumption because cavity
magnetic fields vanish at this location.

B. Accommodation of Magnetic Samples

The exact cavity perturbation technique described in this paper is valid for non-magnetic samples. However, the
technique can be easily extended to accommodate samples with both dielectric and magnetic properties. In defining
the electric and magnetic fields equations used to compute the S matrix, a frequency-dependent propagation constant
k;is computed for each region within the cavity. In the technique described above, &; is written as

k.= 2ﬂf\/(80 &) My,

where £ is frequency and ¢; is the complex permittivity of the i region. The complex permeability of the i™ region
(u;) is omitted, because ; = 1 for non-magnetic samples. However, field equations can be modified for cavities
loaded with magnetic samples simply by expressing k; as

k=271 (& &) (ty- 11,

In addition, the time-averaged energy storage expressions and power loss expressions used to compute quality
factor must be adjusted to include magnetic contributions.
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C. Iterative Technique to Simultaneously Compute Permittivity and Permeability

While it is possible to configure the cylindrical cavity to permit certain assumptions (i.e. positioning the sample
at where the magnetic field vanishes so a relative permeability of one can be assumed), the four-sweep experiment
proposed here allows both the permittivity and permeability to be obtained simultaneously. The first three sweeps
(Figure 3.a-c) of this experiment are identical to the ones described in IV.A. Additionally, a fourth frequency sweep
(Figure 3.d) is performed on a cavity configured such that the sample occupies a significantly larger percentage of
the total cavity volume compared to the sample in the third sweep.

(a) (b) (c) (d)

N
Region 1

Region 2 <{| :

Region 3 <<

Figure 3. Schematics of cavity configurations for simultaneous permittivity/permeability determination

Like the experiment described in IV.A, the permittivity of the non-magnetic quartz holder (pink) is determined
using exact cavity perturbation. Measurements from the first sweep can be related to wall losses. Now that the
quartz holder permittivity is known, exact cavity perturbation is used to solve for the permittivity of the sample
(blue), assuming its permeability is one (i.e. the sample is non-magnetic). This assumption, though approximately
valid because the sample occupies only a small volume near the center of the cavity, is dealt with by performing
exact cavity perturbation on measurements from the fourth sweep. Using the calculated value for sample
permittivity from the third sweep, exact cavity perturbation is performed on measurements from the fourth sweep to
determine the complex permeability of the sample.

Now that a first estimate of the permeability for the sample is known, a more accurate permittivity is computed
using measurements from the third sweep, without having to assume the sample is non-magnetic. But because this
adjusted permittivity value may not be equivalent to the one used to calculate permeability, the permeability
computation using measurements from the fourth sweep is repeated. This process of repeating permittivity and
permeability computations continues until neither value changes significantly from one iteration to the next. This
process removes the third sweep assumption that the sample is non-magnetic because permittivity and permeability
values have been found that satisfy measurements from both the third and fourth frequency sweeps. In practice, the
experiment is simpler than described because most magnetic samples are solid and do not require a separate region
for the quartz holder.
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