
An Analysis of Database Replication Technologies With Regard to Deep Space
Network Application Requirements
Andrea M Connell
Mentors: Paul Wolgast, Silvino Zendejas

Abstract
The Deep Space Network (DSN) has three communication facilities which handle telemetry,
commands, and other data relating to spacecraft missions. The network requires these
three sites to share data with each other and with the Jet Propulsion Laboratory for
processing and distribution. Many database management systems have replication
capabilities built in, which means that data updates made at one location will be
automatically propagated to other locations. This project examines multiple replication
solutions, looking for stability, automation, flexibility, performance, and cost. After
comparing these features, Oracle Streams is chosen for closer analysis. Two Streams
environments are configured – one with a Master/Slave architecture, in which a single
server is the source for all data updates, and the second with a Multi-Master architecture, in
which updates originating from any of the servers will be propagated to all of the others.
These environments are tested for data type support, conflict resolution, performance,
changes to the data structure, and behavior during and after network or server outages.
Through this experimentation, it is determined which requirements of the DSN can be met
by Oracle Streams and which cannot.

Introduction

The Deep Space Network (DSN) is an international system of antennas and associated
telecommunications equipment used to communicate with spacecraft throughout our solar
system. It is comprised of three complexes located at strategic points around the world.
Each mission – including Opportunity, roving around Mars; Dawn, orbiting the Vesta
asteroid; and Voyager 2, reaching the very edge of our solar system – receives commands
and sends data back to Earth through this network. This is made possible through precise
tracking information calculated by teams at the Jet Propulsion Laboratory and sent to the
three complexes. Distributing this type of support data reliably is of vital importance to
gathering knowledge about the solar system.

Database replication is the best way to ensure automatic, continuous, and reliable
distribution of data. Replication means that any changes to the data at one location are
automatically and almost immediately propagated to a second location. DSN applications
are built upon the Oracle database management system, which provides multiple options for
replication. These were considered as a solution to the DSN's distribution needs a number of
years ago, but at that time they were not stable and mature enough to meet all of the
application requirements. A workaround was devised to share data, but it is labor-intensive
and not an ideal alternative. Now that replication technologies are more advanced, they
may provide a more suitable solution. This paper reviews current replication technologies to
determine whether they have improved enough to merit implementation.

Three replication technologies were researched: Oracle Streams, Oracle GoldenGate, and
SharePlex for Oracle. While GoldenGate and SharePlex have some features that Streams
doesn't, the features are not all needed by the DSN. Oracle Streams provides the best
coverage of DSN application requirements with the lowest cost. The results of an in-depth
analysis of Oracle Streams are promising. Two Oracle servers were configured as replication
environments. It was decided to test for datatype support, conflict resolution, performance,
and connection problems first. After ensuring that Oracle Streams could meet these basic
requirements, we looked into filtering, transformations, recovering from being out of sync,

replicating through a firewall, and other more advanced features. Based on this initial
testing, Oracle Streams appears to be a suitable solution to the DSN applications' replication
needs.

The next section will explain these steps in detail. There is still some work to be done before
Oracle Streams can be used in a production environment. This testing was done on a simple
schema with artificial data. Before being implemented, in-depth testing will need to be done
in a realistic database with representative data definition (DDL) and data modification (DML)
patterns. If Oracle Streams 11.2 is used for DSN applications, it will save time and money
by automating the process of data distribution.

Methods

Replication Technologies
There are three potential solutions for data replication in Oracle: Oracle Streams1, Oracle
GoldenGate2, and SharePlex for Oracle3. Streams is part of Oracle Enterprise Edition and
has been evolving for many years. GoldenGate was recently acquired by Oracle and is being
actively integrated into the current product base. While Streams is a very flexible and
mature product, GoldenGate is more highly recommended by Oracle for new applications
because of the ongoing upgrades to it. GoldenGate is real-time, provides support for
heterogeneous replication environments, and is generally considered easier to configure.
However, none of these features are driving requirements for the DSN. Since Oracle
Streams is included in JPL’s current Oracle license and is available at no additional cost, it
was chosen for testing. The main area that may be an issue with Streams is performance
during high-throughput periods4. Testing will need to focus some testing on the extreme
limits of DSN applications, measuring how much latency is created when many records are
updated within a short period of time. The final option, SharePlex, is a third-party
application which did not appear to have any major advantages over Streams and
GoldenGate which would affect the decision.

Environment Setup
Based on the analysis above, an Oracle Streams environment was set up for testing. The
simplest case is one-way replication using a Master/Slave architecture, in which one
database is designated as the source and a second database is the destination. This
involves one method to capture changes on the source and to insert them into an outgoing
queue. Streams has two ways to capture data: the Capture Process and Synchronous
Capture5. The capture process scans redo logs to capture DML and DDL changes.
Synchronous capture runs in the background and grabs DML changes on objects as they
happen. Synchronous capture cannot replicate DDL changes and does not work on all
datatypes; because of these limitations the following work uses the capture process. Before
insertion into the queue, the captured changes are converted into Logical Change Records5
(LCRs) which hold information on the source database, the modified object, the old data
values, and the new data values. The destination database has an apply process, which
takes LCRs from its incoming queue and executes them on the object. The source database
also needs a propagation process which tells the capture queue to send changes to the
apply queue on the destination. After successfully implementing this architecture, a Multi-
Master environment was created7, in which each server has both a capture and an apply
queue. Changes made on either database can be propagated to the other. By its nature,
this architecture creates more opportunity for error. When two servers can modify data
simultaneously, it is possible to have data conflicts. While it is imperative to test the impact
of these conflicts, they are difficult to simulate reliably since manually injecting conflicts is
more difficult. A single tester would need to insert rows almost simultaneously on both
servers to create this effect. It is possible to simulate conflicts by enabling a firewall

between the two servers, making data modifications, and then removing the firewall, but
using a Master/Slave architecture is simpler and has the same result. For this reason, the
majority of the following work has been done on a Master/Slave architecture where a tester
can simulate conflict errors by modifying data first in the Slave and then in the Master.

Data Type Support
The capture, propagate, and apply steps were examined to ensure that they were executed
properly for each datatype of interest to DSN applications. Much of the testing time was
focused on LOBs, which are large objects of either binary (BLOB) or character (CLOB) data,
since they are heavily used in DSN applications and often work differently than other simple
datatypes. BLOBs, CLOBs, and XMLTypes stored as CLOBs are supported natively (along
with basic types like number, varchar2, date, etc). XMLTypes stored object relationally or as
binary XML are supported with the addition of the Extended Datatype Support (EDS)
package8. However, behavior during conflicts varies among these types. Conflicts occur
when values in the destination database do not match what the source reported having
prior to the modification (including cases where the row has been added or removed). This
may occur when the same record is inserted, deleted, or updated on both databases at
roughly the same time, usually in a Multi-Master environment. Generally, the old values
from the source are compared to the values in the destination before the new values are
applied. If a conflict is found, an error is reported and the update does not occur on the
destination. However, there are some exceptions to this rule. Conflict checking does not
occur on columns with the datatype of BLOB, CLOB, or XMLType stored as CLOB. On tables
that require EDS, conflict checking does not occur on any columns. In these situations, the
previous values are simply overwritten and an error is not reported. These behaviors can be
modified with built-in and custom handlers, which are discussed in the next section. Longs,
rowIDs, BFiles, User-defined types, and some Oracle-supplied types (such as ANY types,
URI types, spatial types, and media types) are not captured in Oracle Streams, but are not
as important in DSN applications as the types mentioned earlier.

Conflict Handlers
Oracle Streams has four built-in methods to handle update conflicts: OVERWRITE,
DISCARD, MAXIMUM, and MINIMUM6. They can automatically compare the conflicting
records and select which value to use depending on which method is selected. When a
conflict is detected and the OVERWRITE handler is on, the new values will be used to
replace the old ones. On the other hand, when the DISCARD handler is on, the new values
are ignored. In a two-way Multi-Master architecture, these two handlers could be used to
always give values from one database priority over the other. The MAXIMUM and MINIMUM
handlers take a column name as a parameter and decide which record to keep based on the
value of that column (keeping the LCR with the highest or lowest value, respectively).
However, these built-in methods do not work for LOB types and may not be appropriate for
all applications. Therefore, Oracle also allows a custom DML handler or error handler to be
assigned to each object. A DML handler is executed on every row that is affected by an LCR
and can run either SQL statements or a PL/SQL procedure. Error handlers are PL/SQL
procedures that fire when a conflict is detected on a row. Experimentation has shown that it
is possible to create an error handler that resolves unique constraint violations by changing
the INSERT into an UPDATE, and that resolves "no data found" errors by turning the
UPDATE into an INSERT. However, there are some limitations with custom handlers. LOBs
are not allowed in user-constructed LCRs, so new change records cannot be created (but
existing ones can be modified). In addition, if a row has a LOB column but the LOB was not
altered, it is not included in the LCR and cannot be added to the LCR by the handler. In
effect, this means that handlers cannot alter LOB columns unless the initial change updated
or inserted it. Chapter 14 in the Oracle Streams Replication Administrator's Guide9 shows
this as being possible, but this outcome could not be reproduced in testing. Another

limitation relates to Extended Datatype Support. To replicate datatypes that are not natively
supported in Streams, EDS adds a DML handler to objects that require it. Only one handler
can be applied to each object, so these tables cannot utilize custom procedure handlers.

DDL
The majority of Data Definition Language changes are captured in Oracle Streams. Creating
and altering tables, views, packages, procedures and more were accomplished with no
issues. However, there are some DDL statement that are not captured in Oracle Streams6.

 CREATE DATABASE
● ALTER DATABASE
● ALTER SYSTEM
● ALTER SESSION
● CREATE CONTROLFILE
● CREATE PFILE
● CREATE SPFILE
● SET ROLE
● CALL
● EXPLAIN PLAN
● LOCK TABLE

In addition, GRANT statements are not captured on views. The values of Sequences cannot
be synchronized. CREATE SEQUENCE and ALTER SEQUENCE statements are captured, but
NEXTVAL is not. Documentation recommends initializing servers to use different values (for
instance, even numbers on one server and odd on another) in order to prevent duplicate
sequence values. After EDS has been configured, tables that require it should not be
altered. This means that DDL changes are not captured for tables with XMLType data stored
either object relationally or as binary XML. DDL for other tables and objects will still be
captured normally. Queue names should be no more than 24 characters because extra
information is automatically appended to the name. Tables requiring EDS should be named
with no more than 28 characters because procedures and other objects will be created to
handle replication of types that are not natively supported8.

Performance
Performance was tested next. Since some documentation implies that Oracle Streams does
not scale well when many changes occur within a small time frame4, the tests attempted to
stress the system. First, 50,000 small records were inserted at one time, and took less than
ten seconds to propagate. Clearly Oracle Streams was not overloaded by a large number of
small records, so the next logical thing to test was a smaller number of larger records. The
configuration was tested with four transactions, each containing 500 inserts. The records in
the first transaction were all 1KB each, the second were 10KB each, the third were 100KB
each, and the fourth were 1,000KB each. These results are shown in Graph 1, with the size
of each record along the x-axis and the number of seconds for the task to finish along the y-
axis. The graph shows both the time for the initial insert on the source database and the
time for the destination database to reflect the changes after the source insert finished. This
allows viewers to consider the time that the destination server needed to apply these large
chunks of data in addition to the propagation time.
Graph 2 displays the calculated rate of transfer for each transaction as compared to the
network speed of about 8 Megabyte/second. This graph shows the transfer rate leveling off
rather than decreasing like research implied would happen. It is possible that this testing
did not include large enough data sizes to see the negative impact on performance.
Another piece of information obvious from Graph 2 is that the propagation speed is much
slower than the overall network speed. There are two reasons for this. One is that LCRs
contain more information than just the new values, so they incur overhead in propagation
time. The second explanation is that the time to be applied to the destination server is also

included here. Nonetheless, it is beneficial to see the speed of propagation relative to the
network speed.

Graph 1: Propagation Time

Graph 2: Propagation Speed

These test results may not accurately predict how long propagation will take because of
differences in data types and network configuration, but the measurements of scalability
should prove useful. During testing, it quickly became obvious that large updates filled the
archive logs and froze the transaction until old archive logs were deleted or the
DB_RECOVERY_FILE_DEST_SIZE was increased. The size of archive logs will be determined
by the average amount of data modifications (DML and DDL) made in a day and the
retention needs of the application. Streams also requires supplemental logging, but the level

0.2 3.8 14.2
96.9

0.4 10.4

107.8

1011

0

200

400

600

800

1000

1200

1 10 100 1000

Se
co
n
d
s

KB Per Row

Propagation Time
Insert 500 rows locally Propagate 500 rows to remote server

0

2

4

6

8

1 10 100 1000

M
B
/s
e
co
n
d

KB Per Row

Propagation Speed

Speed of Transaction Speed of Network

required will depend on the database – the use of primary keys, DML handlers, and
transformations are some of the factors that affect logging needs9. This testing has
demonstrated the negative effects of the extra logging required by Streams.

Connection Problems
Another important feature to test is behavior during and after network or server outages.
Outages were simulated with a firewall between the two databases to ensure that updates
remain in the queue until they are appropriately applied to the destination server, even if it
takes a couple of days for the connection to be restored. Documentation reveals that if a
large number of LCRs are created while the destination is unavailable, the queue contents
will spill to disk. If more than one destination is using the queue, this will impact the
performance on those destinations that are still applying changes. One way to mitigate this
problem is to use DBMS_STREAMS_ADM.SPLIT_STREAMS on the source to disable
propagation to the unavailable server, and then MERGE_STREAMS_JOB when it becomes
available again10. Administrators can be alerted when a server is unavailable through
Enterprise Manager Database Colsole or by watching the DBA_OUTSTANDING_ALERTS
table. An alert will be generated if the capture or apply processes abort, or after a
propagation has failed 16 times in a row10.
If the Master in a Master/Slave environment goes down for a substantial period of time,
updates may need to be made to the Slave. In this case, when the Master comes back
online it will not automatically sync with the Slave and the system will be inconsistent.
Oracle's DBMS_COMPARISON package can be used to detect discrepancies and converge
the two sets of data10.

Transformations and Filtering
In some applications the destination database may not be an exact copy of the source.
Tables may be set up differently or perhaps not all of the data will be necessary in the
destination. Streams has built-in methods to add, remove, and rename columns as well as
methods for renaming the schema or table. Other transformations can be done with custom
PL/SQL, but this is a bit slower and more complicated. Filtering rules can be set to global
(selecting all data), schema (selecting all data in the given schema), table (selecting all data
in the given object), or subset (selecting all data in an object which meets a specified
condition). Subset rules cannot be applied to tables with LOB or XMLType columns, but
other filtering methods can. Each step (capture, propagate, and apply) can have up to two
rule sets associated with it that determine which records are affected. One rule set is
positive, indicating everything that should be included in the replication. The other set is
negative, determining what data to exclude. The combination of transformations and
filtering allows a great deal of flexibility in which parts of the database are replicated, which
can improve performance by limiting how much data needs to be sent over the network and
allows the replicas to each serve unique functions in the application6.

Oracle Database File System
Oracle 11.2 has introduced Database File System (DBFS)11. This allows a file system
interface to be used within an Oracle database. There are two ways to implement storage in
DBFS. This testing uses SecureFile Store, in which the file system data is stored in a table in
the database. Files are stored as SecureFile LOBs, which are an improved storage method
for large objects that allow encryption, compression, deduplication, and faster access times.
The second storage option is Hierarchical Store, which allows files to be written to tape or
cloud storage. In Oracle 11.2, Amazon S3 is the only cloud system supported. The files and
directories within DBFS can be managed through a file system mount, a command line
client, or PL/SQL procedures. The file system mount is currently only available on Linux and
Linux.X64 platforms with the FUSE package installed11. FUSE (Filesystem in Userspace) is
supported on Linux kernels 2.4.X and 2.6.X13. The possibility of replicating DBFS is still

unclear. The setup of this feature does not seem to be copied to the replica entirely.
Although the results from the PL/SQL procedures to create files and directories12 are
captured and propagated correctly, the functionality to view the files does not work on the
destination server.

HTTP/HTTPS Propagation
Some of the DSN servers may be located behind firewalls that do not accept all network
traffic. Under a typical setup using Oracle Net Services, replication activities could be
blocked by the firewall and never arrive at the destination. Changing the protocol to use
HTTP or HTTPS makes it easier to allow this traffic through the firewall. This solution is
simple to implement, requiring only a change in the tnsnames file, and does not affect any
functionality of Oracle Streams14. HTTP/HTTPS propagation will need to be analyzed further
to ensure that it meets the security needs of DSN applications.

Conclusion
This research discovered many improvements to the earlier version of Oracle Streams that
DSN previously considered. Although the inability to synchronize sequences and limitations
to the functionality of LOBs and XMLTypes will need special consideration, overall this seems
like a good solution to the data replication needs of DSN applications. Further testing with
realistic data will reveal any restrictions that were not discovered in this basic test
environment and determine the success of potential work-arounds. The automation of data
replication will decrease the man-hours needed to distribute data among the various sites.
Implementing Oracle Streams 11g will save time and money for the Deep Space Network.

Acknowledgments
This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, and was sponsored by the Jet Propulsion Laboratory Student Internship
Program and the National Aeronautics and Space Administration. I would like to
acknowledge my mentor, Paul Wolgast, for providing context and support to my project. My
co-mentor, Silvino Zendejas, was an instrumental source of information regarding the data
replication requirements of the Deep Space Network applications. I would also like to thank
Syed Sadaqathullah for his time setting up and supporting my test servers.

References

1. Oracle Streams Feature Overview. Oracle. 2007.
http://www.oracle.com/technetwork/database/focus-areas/information-
management/streams-fov-11g-134280.pdf

2. Oracle GoldenGate 11g. Oracle. 2010.
http://www.oracle.com/us/products/middleware/data-integration/goldengate11g-ds-
168062.pdf

3. SharePlex for Oracle. Quest Software, Inc. 2011. http://www.quest.com/shareplex-
for-oracle/

4. Yamashita, Fumiko. Oracle GoldenGate, Streams, & Oracle Data Integrator. Oracle.
http://www.slideshare.net/fumikoyamashita/oracle-goldengate-streams-and-data-
integrator

5. Chapter 245: Logical Change Record Types. Oracle Database PL/SQL Packages and
Types Reference 11g Release 2 (11.2). Oracle.
http://download.oracle.com/docs/cd/E14072_01/appdev.112/e10577/t_lcr.htm

6. Oracle Streams Concepts and Administration 11g Release 2 (11.2). Oracle.
http://download.oracle.com/docs/cd/E14072_01/server.112/e10704/toc.htm

7. McKinnell, Ann; Yen, Eric. N-Way Replication in Oracle 11g Streams. January 2010.
http://www.packtpub.com/article/n-way-replication-in-oracle-11g-streams-1

8. Extended Datatype Support for Oracle Streams. ReadMe File. Oracle. 2009.
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFE
RENCE&id=556742.1

9. Oracle Streams Replication Administrators Guide 11g Release 2 (11.2). Oracle.
http://download.oracle.com/docs/cd/E14072_01/server.112/e10705/toc.htm

10. Alapati, Sam; Kim, Charles. Chapter 8: Oracle Streams. Oracle Database 11g. 2007.
Apress. http://www.springerlink.com/content/j0kv20456721t311/fulltext.pdf

11. Oracle Database SecureFiles and Large Objects Developer's Guide 11g Release 2
(11.2). Oracle.
http://download.oracle.com/docs/cd/E14072_01/appdev.112/e10645/adlob_fs.htm

12. Hall, Tim. Oracle Database File System (DBFS) PL/SQL APIs. Oracle-Base.com
http://www.oracle-base.com/articles/11g/DBFS_APIs_11gR2.php

13. Filesystem in Userspace. http://fuse.sourceforge.net
14. Chapter 17: Internet Access to Oracle Streams AQ. Oracle Streams Advanced

Queueing User's Guide and Reference Release 10.1. Oracle.
http://download.oracle.com/docs/cd/B14117_01/server.101/b10785/internet.htm

