The Square Kilometre Array
Massive Data Challenges at the Frontiers of Astronomy, Physics, & Astrobiology

Joseph Lazio
Project Scientist, SKA Program Development Office
&
Jet Propulsion Laboratory, California Institute of Technology
Square Kilometre Array

The Global Radio Wavelength Observatory

- Originally: “Hydrogen telescope”
 Detect H I 21-cm emission from Milky Way-like galaxy at z ~ 1

- SKA science much broader
 ⇒ Multi-wavelength, multi-messenger

- On-going technical development
 ➢ Cyber-infrastructure and “big data”

- International involvement
SKA Key Science

International working group
- Strong-field Tests of Gravity with Pulsars and Black Holes
- Galaxy Evolution, Cosmology, & Dark Energy
- Emerging from the Dark Ages and the Epoch of Reionization
- The Cradle of Life & Astrobiology
- The Origin and Evolution of Cosmic Magnetism

With design philosophy of *Exploration of the Unknown*

New Worlds, New Horizons in Astronomy & Astrophysics Decadal Survey conducted by National Research Council

• A Future Radio-Millimeter-Submillimeter System
 ... A second principle is provision for the long term future through a staged program leading towards major participation in all three components of the international Square Kilometer Array, which has enormous scientific potential and enthusiastic support around the globe.

• Recommendations for New Ground-Based Activities—Large Projects
 Priority 2 (Large, Ground). Mid-Scale Innovations Program [2 of 8 possible initiatives, alphabetical order]
 • Hydrogen Epoch of Reionization Array (HERA)
 Could evolve into low frequency component of SKA
 • North American Nanohertz Observatory for Gravitational Waves (NANOGrav)
 Could evolve into intermediate frequency component of SKA

Exploring the Universe with the world’s largest radio telescope
NWNH Science Program and the SKA

<table>
<thead>
<tr>
<th>Category</th>
<th>Question</th>
<th>Project Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>Gravitational wave astronomy</td>
<td>“Strong-field Probes of Gravity with Pulsars and Black Holes”</td>
</tr>
<tr>
<td></td>
<td>Epoch of Reionization</td>
<td>“Emerging from the Dark Ages and the Epoch of Reionization”</td>
</tr>
<tr>
<td>Origins</td>
<td>What were the first objects to light up the Universe and when did they do it?</td>
<td>“Emerging from the Dark Ages and Epoch of Reionization”</td>
</tr>
<tr>
<td></td>
<td>How do circumstellar disks evolve and form planetary systems?</td>
<td>“The Cradle of Life and Astrobiology”</td>
</tr>
<tr>
<td>Understanding the Cosmic Order</td>
<td>How do baryons cycle in and out of galaxies and what do they do while they are there?</td>
<td>“Galaxy Evolution, Cosmology, and Dark Energy”</td>
</tr>
<tr>
<td>Frontiers of Knowledge</td>
<td>What controls the masses, spins and radii of compact stellar remnants?</td>
<td>“Strong-field Probes of Gravity with Pulsars and Black Holes”</td>
</tr>
</tbody>
</table>

Exploring the Universe with the world’s largest radio telescope
20th Century: We discovered our place in the Universe.
21st Century: We understand the Universe we inhabit.

Cosmology & Fundamental Physics

- Gravity
 - Can we observe strong gravity in action?
 - What is dark matter and dark energy? (dark energy and BAOs with H I galaxies)
- Magnetism
- Strong force
 Nuclear equation of state

Galaxies Across Cosmic Time, The Galactic Neighborhood, Stellar and Planetary Formation

- Galaxies and the Universe
 - How did the Universe emerge from its Dark Ages?
 - How did the structure of the cosmic web evolve?
 - Where are most of the metals throughout cosmic time?
 - How were galaxies assembled?
- Stars, Planets, and Life
 - How do planetary systems form and evolve?
 - What is the life-cycle of the interstellar medium and stars? (biomolecules)
 - Is there evidence for life on exoplanets? (SETI)
Evolution of the Universe

H I brightness temperature signal (w.r.t. CMB)

- X-ray heating, EoR
- First Stars
- Dark Ages
- SKA

(Pritchard & Loeb 2008)
Evolution of the Universe Epoch of Reionization

EDGES
(Bowman et al. 2008)

PAPER

SKA objective: Image the IGM transition in the H I (21-cm) line

Furlanetto et al.; Gnedin
Galaxy Assembly
Stars *and* Gas

- Gas content and dynamics becoming critical part of simulations.
 - N-body simulations themselves can lead to data challenges!
- Astronomy is an *observational* science.
- Need *observations* of gas content —over cosmic time—to understand galaxy formation!

Keres et al.

Eris simulation
(Guedes et al.)
NGC 6946 (T. Oosterloo)
Galaxy Assembly
The Role of Mergers

- Mergers are recognized as important aspect of galaxy evolution and formation.
- Gas can be sensitive tracer of interactions, long after original event took place.
 E.g., Holwerda et al. with THINGS.

(Moster et al. arXiv:1104.0246)
Astrobiology at Long Wavelengths

\(\lambda > 1 \text{ cm} \)

- Not affected by dust
- Complex molecules have transitions at longer wavelengths
- “Waterhole” (1.4–1.7 GHz)
- Magnetically-generated emissions from extrasolar planets

Complex organic molecules detected at radio wavelengths

EVL A 6 cm observations of protoplanetary disks; PEBBLES on e-MERLIN coming soon
21st Century Astrophysics

20th Century: We discovered our place in the Universe.

21st Century: We understand the Universe we inhabit.

Cosmology & Fundamental Physics

- **Gravity**
 - Can we observe strong gravity in action?
 - What is dark matter and dark energy? (dark energy and BAOs with H I galaxies)

- **Magnetism**

- **Strong force**
 Nuclear equation of state

Galaxies Across Cosmic Time, The Galactic Neighborhood, Stellar and Planetary Formation

- **Galaxies and the Universe**
 - How did the Universe emerge from its Dark Ages?
 - How did the structure of the cosmic web evolve?
 - Where are most of the metals throughout cosmic time?
 - How were galaxies assembled?

- **Stars, Planets, and Life**
 - How do planetary systems form and evolve?
 - What is the life-cycle of the interstellar medium and stars? (biomolecules)
 - Is there evidence for life on exoplanets? (SETI)

Exploring the Universe with the world’s largest radio telescope
Did Einstein Have the Last Word on Gravity?

\[G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}/c^4 \]

Relativistic binaries probe
1. Equivalence principle
2. Strong-field tests of gravity
- Neutron star-neutron star and neutron star-white dwarf binaries known
- Black hole-neutron star binaries?

Kramer et al.

PSR J0737-3039
SKA: Gravitational Wave Detector

Test masses on lever arm
- **Pulsar Timing Array** = freely-falling **millisecond** pulsars
- LIGO = suspended mirrors
- LISA = freely-falling masses in spacecraft

Pulsar timing arrays starting to provide results from ensemble of pulsars
- EPTA (van Haasteren et al., *above*)
- PPTA (Yardley et al.)
- NANOGrav (*Demorest et al.*)

Exploring the Universe with the world's largest radio telescope
Origin & Evolution of Cosmic Magnetic

- Magnetic fields are fundamental, but poorly constrained
 - Affects galaxy, cluster evolution?
 - Affects propagation of cosmic rays in ISM and IGM
- All-sky rotation measure surveys provide B fields along lines of sight
- Continuum in I, Q, and U!
Magnetic Fields and Cosmic Rays

- Are ultra-high energy cosmic rays (UHECRs) produced in nearby AGN?
- Galactic magnetic field influences cosmic ray propagation

➤ Different models of Galactic field imply different arrival directions
 - Axi-symmetric vs. bi-symmetric?
 - Field directions above and below the Galactic plane
 - Effect of turbulence?
 - ...?
Cosmology and Gravity

\[G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}/c^4 \]

Origin and Fate of the Universe

- Era of “precision cosmology”
 … or precision ignorance
- Need to sample a substantial volume of the Universe
- Volume \(\sim D^2 \Delta D \Omega \)
 - \(D \) – distance; \(\Omega \) – solid angle
 - Surveying to larger \(D \) is difficult ➔ need larger telescopes
 “square kilometre” of SKA
 - Surveying larger sky areas \(\Omega \)
 “just” requires more observing time

Composition of the Universe

Exploring the Universe with the world’s largest radio telescope
Cosmology and Sky Surveys

- Image the sky, locating galaxies
 Analysis of locations compared with cosmological models to constrain parameters

- Two broad classes of surveys
 - Continuum: e.g., NVSS, FIRST, ASKAP/EMU, WSRT/APERTIF/WODAN
 - Spectroscopic: SDSS, Arecibo ALFALFA, ASKAP/WALLABY, SKA H i survey

 Spectroscopic surveys locate in 3-D space! very powerful

- Ultimate goal: spectroscopic survey of 1 billion galaxies

SDSS Simulated Sky
Detection of weak lensing (E modes) from FIRST (Chang et al.)

Radio observations should have fewer (different) systematics.
21st Century Astrophysics

<table>
<thead>
<tr>
<th>Fundamental Forces and Particles</th>
<th>Origins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity</td>
<td>Galaxies and the Universe</td>
</tr>
<tr>
<td>Magnetism</td>
<td>Stars, Planets, and Life</td>
</tr>
<tr>
<td>Strong force</td>
<td></td>
</tr>
</tbody>
</table>

"The Universe is patiently waiting for our wits to grow sharper."

- Photon frequency / wavelength / energy
- Time
- Polarization
- Sensitivity
- Field of View
- Angular Resolution

Exploring the Universe with the world’s largest radio telescope
The Dynamic Radio Sky

- Neutron stars
 - Magnetars
 - Giant pulses
 - Short GRBs?
- Microquasars
- Tidal Disruption Events

- GRBs (γ-ray loud; γ-ray quiet?)
 - Afterglows
 - Prompt emission?
- Sub-stellar objects
 - Brown dwarfs
 - Extrasolar planets?
- Scintillation
- GW counterparts
- UHECRs
- ETI
- Exploding black holes
- ???

Rotating Radio Transients (RRATS)

Pulsating Brown Dwarfs
Imaging with Arrays

Fourier transform \((u-v)\) plane

Image plane

\[N_{\text{data}} \sim N_{\text{antenna}}^2 N_{\text{frequency}} N_{\text{time}} \]

Exploring the Universe with the world’s largest radio telescope
Imaging Surveys

Requirements
- Many antennas in order to provide sensitivity and image quality.
 - N_{antenna} must be large.
- Spectral resolution because of wide-field effects, line emission from galaxies, or both.
 - $N_{\text{frequency}}$ must be large.
- Long integrations in order to obtain adequate signal-to-noise ratio.
 - N_{time}, e.g., 1 hr at 1 s sampling?

$$N_{\text{data}} \sim N_{\text{antenna}}^2 N_{\text{frequency}} N_{\text{beams}} N_{\text{time}}$$

<table>
<thead>
<tr>
<th></th>
<th>ASKAP</th>
<th>SKA Phase 1</th>
<th>SKA Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{antenna}</td>
<td>30</td>
<td>~ 250</td>
<td>~ 1000</td>
</tr>
<tr>
<td>N_{beams}</td>
<td>30</td>
<td>1</td>
<td>$1?$</td>
</tr>
<tr>
<td>$N_{\text{frequency}}$</td>
<td>$\sim 16k$</td>
<td>$\sim 16k?$</td>
<td>$\sim 16k?$</td>
</tr>
</tbody>
</table>
Imaging Surveys II

<table>
<thead>
<tr>
<th></th>
<th>ASKAP</th>
<th>SKA Phase 1</th>
<th>SKA Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{antenna}</td>
<td>30</td>
<td>250</td>
<td>1000</td>
</tr>
<tr>
<td>N_{beams}</td>
<td>30</td>
<td>1</td>
<td>1?</td>
</tr>
<tr>
<td>$N_{\text{frequency}}$</td>
<td>$\sim 16k$</td>
<td>$\sim 16k?$</td>
<td>$\sim 16k?$</td>
</tr>
<tr>
<td>N_{time}</td>
<td>$\sim 4k$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{data}</td>
<td>1.8×10^{12}</td>
<td>4×10^{12}</td>
<td>65×10^{12}</td>
</tr>
<tr>
<td>N_{OPS}</td>
<td>18×10^{15}</td>
<td>40×10^{15}</td>
<td>650×10^{15}</td>
</tr>
</tbody>
</table>

- Imaging is more than “just” an FFT.
 Gridding, deconvolution, wide-field corrections, self-calibration, …
- Community estimates are 10^4 to 10^5 ops per visibility datum(!).
- Leads to significant power challenges
 - Related to moving data on/off chips
 - Careful design can yield significant savings, e.g., D’Addario (SKA Memo 130)
Fundamental Physics with Radio Pulsars

Arrival times of pulses from radio pulsars can be measured with phenomenal accuracy

- Better than 100 ns precision in best cases
- Enables high precision tests of fundamental physics
 - Theories of gravity, gravitational waves, nuclear equation of state
 - 1993 Nobel Prize in Physics

- **Problem**: Not all pulsars are equal!
- Good “timers” < 10% of total population
- Need to find **many more**!
 - All-sky survey
Pulsar Surveys I

Requirements

- Large bandwidths because pulsars are faint
- Long integration times because pulsars are faint
- Rapid time sampling in order to resolve pulse profile
- Narrow frequency channelization in order to mitigate interstellar scattering

- For a “pixel” on the sky, accumulate data for a time Δt over a bandwidth $\Delta \nu$

 Suppose $\Delta t = 20$ min., $\Delta \nu = 800$ MHz
- Time sampling δt with frequency channelization $\delta \nu$

 For GBT GUPPI, $\delta t = 81.92$ μs, $\delta \nu = 24$ kHz

 60 GB data sets per pixel …
For GBT
• At 800 MHz, “pixel” \(\sim 16' = 0.3^\circ \)
• About 350 kpixels in the sky
• 20 PB data set

For SKA
• At 800 MHz, “pixel” = 1.2'
• About 76 Mpixels in the sky
• 4.6 EB data set
Data Intensive Astronomy
(“There is nothing new under the Sun.”)

Data Volumes

- Hipparchus
 - ca. 135 BCE
 - Stellar catalog with 850 entries
 - SKA pulsar survey

Computational Limitations

- Harvard computers
 - Production of stellar plates and spectra (“data rate”) was increasing enormously
 - Examined and classified telescope output
 - SKA all-sky survey

Exploring the Universe with the world’s largest radio telescope
SKA Pathfinding

- SKA is ultimate goal, though long-term program
- Precursors and many pathfinders in existence or under construction
 - Data challenges before SKA comes on-line
 - Scalability could be an issue
Square Kilometre Array

The Global Radio Wavelength Observatory

- Originally: “Hydrogen telescope”
 Detect H I 21-cm emission from Milky Way-like galaxy at z ~ 1

- SKA science much broader
 ⇒ Multi-wavelength, multi-messenger
- On-going technical development
 ➢ Cyber-infrastructure and “big data”
- International involvement