A Spaceborne Design and Airborne Demonstration of Digitally-Beamformed Antennas for SweepSAR Imaging

Gregory Sadowy, Neil Chamberlain, Scott Hensley, Ernie Chuang, Hirad Ghaemi, Brandon Heavey, Eric Liao, Sean Lin, Timothy Miller, Dragana Perkovic, Momin Quddus, Mauricio Sanchez- Barbetty, Scott Shaffer, Jordan Tanabe, Tushar Thrivikraman & Louise Veilleux

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

IDGA 8th Military Antennas Conference
Sept 13th 2011, Washington, DC

Copyright 2011, Jet Propulsion Laboratory, California Institute of Technology
Outline

• Overview
 – NASA Science Applications – Proposed DESDynI Mission Overview
 – SweepSAR Overview
• Proposed DESDynI Array-fed Reflector Design and Performance
 – Reflector and Feed Configuration
 – Modeling
 – Patterns and gain
 – Pointing and blockage
• Airborne Demonstration
 – Hardware Overview
 – Test Flight Results
• Conclusions
Proposed DESDynI Mission Overview

DESDynI: Deformation Ecosystem Structure Dynamics of Ice

Mission Objectives:
• Determine the likelihood of earthquakes, volcanic eruptions, and landslides.
• Predict the response of ice sheets to climate change and impact on sea level.
• Characterize the effects of changing climate and land use on species habitats and carbon budget.
• Understand the behavior of subsurface reservoirs.

Status:
• Successful Mission Concept Review in Jan. 2011
• Phase-A start delayed due to NASA budget issues

http://desdyni.jpl.nasa.gov/
Radar Design to Meet Critical Requirements

• Repeat Period requirement for Deformation science drives the Radar Swath
 – 13-day Repeat Period => 218km Swath Width

• Sensitivity requirement for Biomass (cross-pol) measurement drives Antenna Size and Radar Power

• Accuracy requirements for Deformation and Biomass drive Electronics & Mechanical Stability and Calibration

• A new SweepSAR technique was adopted as a means to achieve much wider swath than conventional SAR strip-mapping, without the performance sacrifices associated with the traditional ScanSAR technique

Conventional StripMap: <~70km Swath

Resulting ~40 day repeat does NOT meet proposed deformation and ice science requirements

Conventional ScanSAR: non-uniform along-track sampling

Resulting degradation in effective azimuth looks does NOT meet proposed ecosystem science requirements

Pre-decisional - for Planning and Discussion Purposes Only
SweepSAR with Array-Fed Reflector

- Our selected implementation for the SweepSAR technique would provide a completely new capability
 - Solves the traditional unwieldy, complex antenna problem with a large passive mesh reflector, and compact feed electronics
 - Breaks the standard SAR performance limits by separating transmit and receive apertures using digital beamforming techniques on receive

- **SweepSAR with Array-Fed Reflector turns out to be the only option that meets proposed DESDynI science requirements, given the cost constraints**

- Aerospace Corp study* comparing the Array-Fed Reflector implementation to conventional Planar Phased Array (with its ScanSAR performance disadvantage) concluded that
 - “The array-fed reflector design is predicted to be lower cost than either of the planar array designs (complex/light or simple/heavy structure), primarily due to two factors:
 - The larger antenna area for the array-fed reflector concept, together with the SweepSAR technique would allow a great reduction in transmit power compared to the planar array concepts
 - The mesh reflector for the array-fed reflector is lighter than either of the planar arrays and nearly “off-the-shelf”

[* Frank Kantrowitz, Dave Ksienki, Mark Barrera, Walter Bloss, Vince Canales, Peter Carian, Adam Chandler, David Chien, Keven MacGowan, Samuel Osofsky, Dec 17, 2010]
Advantages

• On Transmit, all Feed Array elements are illuminated (*maximum Transmit Power*), creating the wide elevation beam.

• On Receive, the Feed Array element echo signals are processed individually, taking advantage of the full Reflector area (*maximum Antenna Gain*).

• Uses digital beamforming to provide wide measurement swath.
 – DBF allows multiple simultaneous echoes in the swath to be resolved by angle of arrival.

• Uses large reflector to provide high aperture gain.
 – Full-size azimuth aperture for both transmit and receive.
 – Full-sized elevation aperture on receive.
 – Aperture size effectively reduced on transmit to provide full-swath illumination.

• Only need to store and process data from feed array elements being illuminated by an echoes.
 – This can be predicted with *a priori* knowledge of measurement geometry (orbit, pulse timing and topography).
SweepSAR Pulse Timing

- **Conventional Radar data acquisition timing** – Receive Window is within the Inter-Pulse Period (IPP):

 Transmit Events

 Receive Windows

 Conventional Radar data acquisition timing - Receive Window is within the Inter-Pulse Period (IPP):

- **SweepSAR wide-swath data acquisition timing** – Receive Window extent is longer than an IPP:

 Transmit Events

 Receive Windows

 SweepSAR wide-swath data acquisition timing - Receive Window extent is longer than an IPP:

- The Receive channels (“Rx Beams”) that are active during a Transmit event are blanked for the duration of the Transmit pulse, resulting in gaps in the swath.

Pre-decisional - for Planning and Discussion Purposes Only
Antenna System

- Deployable mesh antenna
 - 9m to 15m projected diameter
 - Northrop AstroMesh or Harris Deployable Truss
 - High mass efficiency: 1.0 – 1.5 kg/m²
 - High TRL with many successful deployments

- Array feed
 - 16x2 to dual-pol patch elements
 - 4x2 antenna tiles
 - Elements fed in 1x2 or 2x2 configurations
 - Separate TRMs for H-pol and V-pol
 - 3.25m length structure
Radar Instrument Configuration

- All Radar components are mounted on the Feed/Electronics Structure to facilitate integration, test, and calibration prior to instrument delivery to ATLO.
Antenna Optics and Performance

15m Diameter Prescription

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Projected aperture</td>
<td>15 m</td>
</tr>
<tr>
<td>F</td>
<td>Focal Length</td>
<td>15 m</td>
</tr>
<tr>
<td>H</td>
<td>Edge offset</td>
<td>-2.0</td>
</tr>
<tr>
<td>Ψ_C</td>
<td>Center angle</td>
<td>21°</td>
</tr>
<tr>
<td>$2\Psi_S$</td>
<td>Subtended angle</td>
<td>55°</td>
</tr>
</tbody>
</table>

Nominal Performance Prediction

<table>
<thead>
<tr>
<th>Parameter</th>
<th></th>
<th>Tx</th>
<th>Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan range</td>
<td>deg</td>
<td>N/A</td>
<td>± 8</td>
</tr>
<tr>
<td>Directivity</td>
<td>dBi</td>
<td>33.3</td>
<td>42.3</td>
</tr>
<tr>
<td>Loss</td>
<td>dB</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Gain</td>
<td>dBi</td>
<td>31.6</td>
<td>40.6</td>
</tr>
<tr>
<td>HPBW az</td>
<td>deg</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>HPBW el</td>
<td>deg</td>
<td>15.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Cross Pol</td>
<td>dB</td>
<td>-25</td>
<td>-25</td>
</tr>
<tr>
<td>EIRP</td>
<td>dBW</td>
<td>65.4</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Various antenna feed concepts are being evaluated for cost and performance
 – Integrated composite antenna tiles (adapted from UAVSAR and Deep Impact)
 – Metal-patch arrays (adapted from Juno Microwave Radiometer design)
Antenna Modeling

• Two key steps:
 – 1) Generate 1x2 feed patterns calculated in HFSS
 – 2) Analysis using Ticra Grasp
 • Import HFSS fields as tabulated feed to array object
 • Perform spherical wave expansion of feed fields
 • Perform PO and PTD synthesis
 – Feed and boom blockage modeled suing method of moments
 – Feed-reflector interaction (P3) included
 – Conductive loss not modeled (accounted in gain budget)
Antenna Performance Summary
Receive Pattern Predictions
Transmit Pattern Predictions
Pointing and Blockage

- **Thermally-induced misalignment:**
 - Pointing error: 2x mechanical rotation (~1/100 degree)
 - Gain drop: ~0.01 dB
- **Amplitude error (0.5 dB rms) and phase error (10 deg rms) in TRMs and feed network:**
 - Pointing error: ~0.1 deg rms
 - Gain drop: ~0.08 dB
SweepSAR Airborne Demo

- Now that the shuttle has finished flying...

Surprisingly, this concept was rejected.

Pre-decisional - for Planning and Discussion Purposes Only
SweepSAR Airborne Demo Overview

- Ka-band (35.6 GHz) airborne SweepSAR using array-fed reflector and digital beamforming
 - 8 simultaneous receive beams generated by 40-cm offset-fed reflector an 8-element active array feed
 - 8 digital receiver channels, all raw data recorded
 - Receive antenna system is approximately 1/28th scale of proposed DESDynI antenna
- Supports radar instrument development and risk mitigation for proposed DESDynI mission:
 - Demonstrates first-of-its-kind, real-world performance of SweepSAR with array-fed reflector
 - Reduces risk by shaking out engineering issues that are not predicted by simulation
 - Demonstrates performance of critical beamforming and calibration techniques
 - Identify, quantify and mitigate error sources
 - Trade algorithm performance vs. computational resource consumption
 - By manipulating the data can also
 - Demonstrates suppression of range ambiguities
 - Demonstrates “transmit-gap” mitigation

Pre-decisional - for Planning and Discussion Purposes Only
SweepSAR Airborne Demo Hardware

- DC-8 Nadir-2 Port Pressure Box
- 16-channel Digital Receiver Array (Mounts on top plate, not shown in solid model)
- Inertial Measurement Unit (LN-251 EGI)
- 40 cm Reflector
- Transmit Array
- Radome
- High-stability feed arm
- 16-channel Active Receiver Feed

Pre-decisional - for Planning and Discussion Purposes Only
Transmit Antenna

- Approximate dimensions: 50 cm (azimuth) x 2 cm (elevation)
- Beamwidth: 1 degree (azimuth) x 20 degrees (elevation)
- Successful design from GLISTIN Airborne Interferometer
Ka-band Receive Feed Array

- 32 microstrip patch radiators arranged in 16 pairs
- One low-noise amplifier (LNA) for every pair
- Low-loss temperature stable substrate
- Embedded calibration signal injection path
 - Calibration data collected continuous during flight
- 16 connectors on back connect to DBF array using phase stable coaxial cables

16-channel Active Receiver Feed
Digital Beamforming Architecture

Beamforming Data System

- 16 L-band Digital Receivers
 - 16 Ka-band signals are converted to L-band
- Two parallel FPDP data busses (8 receivers each)
- Aggregator board multiplexes all data streams on to as single serial FPDP connection
- All data is written to a high speed disk array (JBOD – “just a bunch of disks”)

16-channel Digital Receiver Array

L-band Digital Receiver

- Input 1215-1300 MHz
- Input analog bandwidth: 3.3 GHz
- Sample rate 240 Ms/s @ 10 bits resolution
- Digital demodulation and filtering using Xilinx Virtex 5 FPGA
- Output bandwidth: 80 MHz
- Data output over front-panel data port (FPDP)
Hardware Photos

Pre-decisional - for Planning and Discussion Purposes Only
Predicted Beamforming Performance

- Studied beamforming performance
 - HFSS used to generate feed patterns
 - Ticra GRASP used to model reflector/feed system
- Modeling include feed blockage and obstructions at edge of beam due to antenna mounting in aircraft
- Feed blockage causes small reduction in gain as well as gain ripples across the swath
- Similar to proposed DESDynI antenna models
Predicted SNR and Azimuth Ambiguity Performance

- Excellent sensitivity (-35 dB NESZ) using 20 us pulse
- Enough SNR margin to still have good sensitivity for short-pulse experiment modes (2us)
- Azimuth ambiguities < -20 dB (1350 Hz PRF)
- No significant range ambiguities using normal PRF
 - Can deliberately introduce range ambiguities and data collection gaps using staggered PRF scheme to place multiple pulses in swath
 - Simulation of proposed DESDynI radar pulsing, data acquisition and processing provides demonstration of SweepSAR technique under “real-world” condition
Measured Receive Antenna Patterns

- Complex antenna patterns (amplitude and phase) measured for the 8 receive beams.
- Beamwidth is approximately 1° and the peak sidelobe level is around -10 dB.
Radar Parameters and Mapping Geometry

- The eight beams map a swath extending from 33.3°-39.5° that gives a swath width of 1.4 km.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>8 mm</td>
</tr>
<tr>
<td>PRF</td>
<td>1300 Hz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>80 MHz</td>
</tr>
<tr>
<td>Sampling Frequency</td>
<td>240 MHz</td>
</tr>
<tr>
<td>Flight Altitudes</td>
<td>8750 or 10500 m</td>
</tr>
<tr>
<td>Transmit Power</td>
<td>250 W</td>
</tr>
</tbody>
</table>
SweepSAR Test Site

- Data Collection Flights
 - Data collected using corner reflectors deployed in radar dark areas at Edwards AFB
 - Two sites identified:
 - Rosamond Lake – UAVSAR calibration array with large 2.4 m reflectors
 - Rogers Lake – Smaller 1 m reflectors deployed
 - Reflector spacing designed to effectively measure beamformed pattern performance

Experiment Locations at Edwards AFB

Flight Direction 80° Heading

1.5 km

Pre-decisional - for Planning and Discussion Purposes Only
SweepSAR Demo Successful Test Flights

- **SweepSAR Flight History**
 - Two flights flown on July 7 and July 9
 - 3.5 hours per flight
 - 12 data collection lines
 - >200 GB of for flight 2

- Flight 1 used a PRF of 100 Hz so was not critically sampled in azimuth – showed had functioning radar!

- Data quality for Flight 2 is good except for gain anomaly on receiver #4 (is being investigated in lab).

Raw Radar Data (Rogers Lake, Beam #5)

- Terrain Echoes
- Reflector Echoes
- Antenna Beam
- Cal Tone
Channel Spectra

- Range spectra were generated for the 8 receive channels.
 - Power on channel 8 is low relative to the other channels by 3-5 dB.
 - Channel 4 is lower in power and shows a distorted spectrum.
 - Still able to form imagery on Channel 4, however it presents a problem to beam forming.
Individual Beam Imagery

Beam 8
Beam 7
Beam 6
Beam 5
Beam 4
Beam 3
Beam 2
Beam 1

Mainlobe
Sidelobes

Pre-decisional - for Planning and Discussion Purposes Only
Power Profiles

- Power profiles are in reasonable agreement with measured antenna patterns.
- Note power in channel 4 and 8 are low as expected from the spectral plots.
Corner Reflector Image

- Simple maximum power combining algorithm used to generate a simple mosaic of the individual beam images.

Beam Mosaic Image Beam Number Image Google Earth Image
14 Freeway Imagery

- Simple maximum power beam mosaic of over section of the 14 freeway.
SweepSAR Digital Beam Forming Algorithm

- Block diagram of a basic beam forming algorithm adopted for use for the SweepSAR demonstration.
Rogers Lake Beam Formed Imagery

- Pass 11 imagery before and after beam forming.
Palmdale, CA Beamformed Imagery

Visible image (Google Earth) Beamformed Ka-band SweepSAR Image

Pre-decisional - for Planning and Discussion Purposes Only
Conclusions

- NASA/JPL has developed SweepSAR technique that breaks typical SAR trade space using time-dependent multi-beam DBF on receive.
- Developing SweepSAR implementation using array-fed reflector for proposed DESDynI mission concept.
- Performed first of a kind airborne demonstration of the SweepSAR concept at Ka-band.
- Validated calibration and antenna pattern data sufficient for beam forming in elevation.
 - Provides validation evidence that the proposed DESDynI system architecture is sound.
- Additional testing will include the injection of synthetic targets to validate the range ambiguity predictions of SweepSAR.
- Future plans include using prototype DESDynI digital flight hardware to do the beam forming in real-time onboard the aircraft.