Improved Wide Operating Temperature Range of High Rate Nano-Lithium Iron Phosphate Li-Ion Cells with Methyl Butyrate-Based Electrolytes

M. C. Smart1, A. S. Gozdz2, L.D. Whitcanack1, and B. V. Ratnakumar1

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
2 A123Systems, Inc. 200 West Street, Waltham, MA 02451

220th Meeting of the Electrochemical Society (ECS) Boston, Massachusetts October 11, 2011

Copyright 2011. All rights reserved.
Outline

• Objectives and Approach
• Introduction
 • Performance of COTS A123 LiFePO$_4$-Based Li-Ion Cells
 • 100% DOD Cycle Life Performance
 • Partial DOD LEO Cycle Life Performance
 • Discharge Rate Capability at Different Temperatures
 • A123 LiFePO$_4$-Based Li-Ion Cells with JPL Electrolytes
 • Discharge Rate Capability at Low Temperatures
 • Cycle Life Performance at Room Temperature
 • Cycle Life Performance at High Temperatures (up to 60°C)
 • Variable Temperature Cycling
 • Charge Characteristics at Low Temperatures
• Conclusions
• Acknowledgement
Objectives and Approach

- Develop advanced Li-ion electrolytes that enable cell operation over a wide temperature range \((i.e., -30 \text{ to } +60^\circ C)\) and provide good life characteristics for HEV and PHEV applications.
- Define the performance limitations at low and high temperature extremes, as well as, life limiting processes.
- Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

Outline

- DOE desires Li-ion batteries that can operate over a wide temperature range \((i.e., -30 \text{ to } +60^\circ C)\) and provide good life characteristics for HEV and PHEV applications.
- NASA also desires Li-ion batteries that can operate over a wide temperature range for future planetary lander and rover applications.
Why Battery Performance Degrades at Low Temperatures?

- Increased cell and electrode polarizations in general
 - Ohmic, kinetic as well as mass transfer
- Increased Ohmic polarization
 - Mainly contributed by the electrolyte
 - Reduced Ionic mobility in electrolyte.
 - Slow diffusion of ions mainly due to increased viscosity of solvent components
 - Reduced ionic strength due to lower solubility at low temperatures.
- Slower electrode kinetics
 - Slower charge transfer at the electrodes governed by Arrhenius dependence.
 - Charge-transfer over film-covered electrodes?
- Enhanced mass transfer polarization
 - Slow diffusion of (Li\(^+\)) ion in solution caused by increased electrolyte viscosity
 - Slower diffusion of reactant/product species in the electrode lattices (bulk diffusion).
 - Surface films complicating the charge transfer and diffusion process.
- Likelihood of lithium plating is possible at high charge rates at low temperatures
Low Temperature Lithium Ion Electrolytes

Electrolyte Development: Approach/Background
General Approaches to Improve Low Temperature Performance of SOA Electrolytes

- Optimization of linear carbonate type and concentration
- Optimization of cyclic carbonate concentration (i.e., EC content)
- Use of aggressive low viscosity co-solvents
- Optimization of electrolyte salt type and concentration
- Use of “SEI promoting” additives

- These approaches are often used in conjunction to achieve desired result.
- In addition, the specific application can influence low temperature electrolyte selection (i.e., low temperature requirement, life requirement, or the need for high temperature resilience, etc.).
Low Temperature Lithium Ion Electrolytes

Background: Use of Ester-Based Solvents

- **Ohta, and coworkers (Matsushita):** have investigated the use of MA-, EP-, and MP-based systems (i.e., EC+DEC+MP)

- **At JPL, we have previously studied coworkers have studied MF-, EA-, MA-, EP-, and EB-based systems:**

- **Herreyre and coworkers have studied EA- and MB-based systems (SAFT):**

- **Shiao and coworkers have studied EA- and MA-based systems (Maxpower):**

- **Sazhin and coworkers have studied EP- and MA-based systems (Samsung):**

- **Jow and coworkers have studied EA- and GBL-based systems (Army Res. Lab.):**

Low Viscosity, Low Melting Electrolyte Co-Solvents

Candidate High Molecular Weight Ester-Based Co-Solvents

Properties of Ester Co-Solvents

<table>
<thead>
<tr>
<th>Chemical Structure</th>
<th>Name</th>
<th>m.p.</th>
<th>b.p</th>
<th>Viscosity (25°C)</th>
<th>Density</th>
<th>D dissociation constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃COOCH₃</td>
<td>Ethyl acetate</td>
<td>-84°C</td>
<td>77°C</td>
<td></td>
<td>0.902</td>
<td></td>
</tr>
<tr>
<td>CH₃COOCH₂CH₃</td>
<td>Methyl propionate</td>
<td>-87.5°C</td>
<td>79.8°C</td>
<td>0.431 cP</td>
<td>0.915</td>
<td>6.200</td>
</tr>
<tr>
<td>CH₃C(O)OCH₂CH₃</td>
<td>Ethyl propionate</td>
<td>-73°C</td>
<td>99°C</td>
<td></td>
<td>0.888</td>
<td></td>
</tr>
<tr>
<td>CH₃C(O)OCH₂CH₂CH₃</td>
<td>Methyl butyrate</td>
<td>-85.8°C</td>
<td>102.8°C</td>
<td>0.541 cP</td>
<td>0.698</td>
<td>5.48</td>
</tr>
<tr>
<td>CH₃C(O)OCH₂CH₂OCH₃</td>
<td>Ethyl butyrate</td>
<td>-93°C</td>
<td>120°C</td>
<td>0.639 cP</td>
<td>0.878</td>
<td>5.18</td>
</tr>
<tr>
<td>CH₃C(O)OCH₂CH₂CH₂</td>
<td>Propyl butyrate</td>
<td>-95.2°C</td>
<td>143°C</td>
<td>0.673</td>
<td>0.873</td>
<td>4.3</td>
</tr>
<tr>
<td>CH₃C(O)OCH₂CH₂CH₂</td>
<td>Butyl butyrate</td>
<td>-91.5°C</td>
<td>164°C</td>
<td>0.629</td>
<td>0.829</td>
<td></td>
</tr>
</tbody>
</table>

Ionic Conductivity of Ester Based Electrolytes

- **Gen I Baseline Solution (2003 MER Electrolyte)**: 0.02 mS/cm @ -60°C
- **2.66 mS/cm @ -60°C**
A123 2.20Ah High Power COTS Lithium-Ion Cells

100 % DOD Cycle Life Performance at 23°C

Discharge Capacity (Ah)

Discharge Energy (Wh/Kg)

- Excellent life characteristics have been displayed thus far, even when using aggressive rates (i.e., 3C charge and discharge).
- Over 90% of original capacity displayed after > 2,000 full discharge cycles.
A123 2.20 Ah High Power Lithium-Ion Cells
Low Earth Orbit (LEO) Cycle Life Performance

Watt-Hour Efficiency (%)

End of Discharge Voltage (EODV)

Capacity Loss During Cycling

- Excellent performance observed to-date, even when aggressive DOD’s are employed (i.e., up to 50 % DOD)
- Data represents over 4 years of cycling
A123 2.20 Ah High Power Lithium-Ion Cells
Discharge Rate Performance of COTS Cells

- Low voltage loss and capacity decrease even at high rates of > 6C indicative of high power capability
- Encouraging low temperature performance capability (cell charged at -20°C)

One intent is to improve the low temperature performance, while still preserving the excellent high temperature stability.
A123 2.20 Ah High Power Lithium-Ion Cells
Discharge Rate Characterization Testing at -30°C

Discharge Capacity (Ah)
Discharge Energy (Wh/Kg)

- 1.4M LiPF₆ in EC+EMC+MB (10:10:80)
- Cell both charged and discharge at -30°C

Cells obtained from A123 Systems contains promising JPL developed electrolytes, namely

1.2M LiPF$_6$ in EC+EMC+MB (20:20:60 vol %) + 4% FEC and

1.2M LiPF$_6$ in EC+EMC+MB (20:20:60 vol %) + 2% VC

A123 Systems is actively developing Li-ion batteries for automotive applications

Currently testing technology over a wide range of conditions (i.e., -60 to +60°C).
A123 LiFePO4-Based Lithium-Ion Cells

Results of Initial Characterization

<table>
<thead>
<tr>
<th>Cell Series</th>
<th>Cell ID</th>
<th>Cell Weight (Grams)</th>
<th>Cell Weight (kg)</th>
<th>Initial Voltage</th>
<th>Initial Capacity (Ah)</th>
<th>Initial Watt-Hours</th>
<th>Initial Wh/kg</th>
<th>Calculated Impedance (mOhms) (10% SOC)</th>
<th>Calculated Impedance (mOhms) (50% SOC)</th>
<th>Calculated Impedance (mOhms) (80% SOC)</th>
<th>Calculated Impedance (mOhms) (90% SOC)</th>
<th>Calculated Impedance (mOhms) (95% SOC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVJ.00005</td>
<td>ACC-00</td>
<td>75.6</td>
<td>0.0755</td>
<td>3.300</td>
<td>2.1845</td>
<td>7.079</td>
<td>93.77</td>
<td>12.73</td>
<td>13.06</td>
<td>13.24</td>
<td>13.55</td>
<td>14.13</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>ACC-02</td>
<td>75.6</td>
<td>0.0755</td>
<td>3.292</td>
<td>2.1287</td>
<td>6.882</td>
<td>91.16</td>
<td>12.97</td>
<td>13.18</td>
<td>13.31</td>
<td>13.70</td>
<td>14.19</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>ACC-03</td>
<td>76.2</td>
<td>0.0762</td>
<td>3.292</td>
<td>2.2123</td>
<td>7.187</td>
<td>94.32</td>
<td>11.81</td>
<td>12.21</td>
<td>12.33</td>
<td>12.63</td>
<td>13.03</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>ACC-04</td>
<td>76.2</td>
<td>0.0762</td>
<td>3.300</td>
<td>2.2122</td>
<td>7.194</td>
<td>94.40</td>
<td>10.10</td>
<td>10.19</td>
<td>10.38</td>
<td>10.69</td>
<td>11.02</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>ACC-05</td>
<td>75.8</td>
<td>0.0758</td>
<td>3.309</td>
<td>2.2422</td>
<td>7.284</td>
<td>96.10</td>
<td>13.35</td>
<td>14.11</td>
<td>14.16</td>
<td>14.33</td>
<td>14.83</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>ACC-06</td>
<td>76.0</td>
<td>0.0760</td>
<td>3.311</td>
<td>2.2020</td>
<td>7.162</td>
<td>94.23</td>
<td>12.24</td>
<td>12.76</td>
<td>12.85</td>
<td>13.06</td>
<td>13.58</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>ACC-07</td>
<td>75.6</td>
<td>0.0756</td>
<td>3.309</td>
<td>2.2145</td>
<td>7.202</td>
<td>95.26</td>
<td>12.12</td>
<td>12.83</td>
<td>12.85</td>
<td>13.09</td>
<td>13.52</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>ACC-08</td>
<td>76.2</td>
<td>0.0762</td>
<td>3.307</td>
<td>2.2495</td>
<td>7.308</td>
<td>95.91</td>
<td>12.70</td>
<td>13.46</td>
<td>13.37</td>
<td>13.70</td>
<td>14.10</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>AVC-01</td>
<td>71.2</td>
<td>0.0712</td>
<td>3.385</td>
<td>2.3674</td>
<td>7.666</td>
<td>107.67</td>
<td>21.00</td>
<td>21.64</td>
<td>21.94</td>
<td>22.31</td>
<td>22.86</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>AVC-02</td>
<td>71.0</td>
<td>0.0710</td>
<td>3.388</td>
<td>2.3606</td>
<td>7.646</td>
<td>107.67</td>
<td>20.61</td>
<td>21.12</td>
<td>21.36</td>
<td>21.82</td>
<td>22.34</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>AVC-03</td>
<td>71.0</td>
<td>0.0710</td>
<td>3.390</td>
<td>2.3649</td>
<td>7.688</td>
<td>108.00</td>
<td>19.99</td>
<td>21.09</td>
<td>21.18</td>
<td>21.52</td>
<td>22.13</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>AVC-04</td>
<td>71.0</td>
<td>0.0710</td>
<td>3.387</td>
<td>2.3468</td>
<td>7.602</td>
<td>107.67</td>
<td>20.63</td>
<td>21.61</td>
<td>21.85</td>
<td>22.16</td>
<td>22.80</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>AVC-05</td>
<td>71.2</td>
<td>0.0712</td>
<td>3.389</td>
<td>2.3800</td>
<td>7.712</td>
<td>108.31</td>
<td>19.58</td>
<td>20.28</td>
<td>20.42</td>
<td>20.78</td>
<td>21.30</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>AVC-06</td>
<td>71.2</td>
<td>0.0712</td>
<td>3.390</td>
<td>2.3413</td>
<td>7.588</td>
<td>106.53</td>
<td>19.87</td>
<td>20.29</td>
<td>20.57</td>
<td>20.90</td>
<td>21.48</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>AVC-07</td>
<td>71.0</td>
<td>0.0710</td>
<td>3.388</td>
<td>2.3637</td>
<td>7.660</td>
<td>107.89</td>
<td>19.78</td>
<td>20.66</td>
<td>20.94</td>
<td>22.25</td>
<td>21.48</td>
</tr>
<tr>
<td>TVJ.00005</td>
<td>AVC-08</td>
<td>70.8</td>
<td>0.0708</td>
<td>3.384</td>
<td>2.3433</td>
<td>7.591</td>
<td>107.22</td>
<td>17.76</td>
<td>18.43</td>
<td>18.65</td>
<td>19.01</td>
<td>19.59</td>
</tr>
</tbody>
</table>

| Average | | 72.63 | 0.07 | 3.35 | 2.30 | 7.46 | 102.86 | 17.16 | 17.75 | 17.90 | 18.27 | 18.74 |

Baseline Electrolyte

- 1.2M LiPF₆ in EC+EMC+MB (20:20:60 vol %) + 2% VC
- 1.2M LiPF₆ in EC+EMC+MB (20:20:60 vol %) + 4% FEC
A123 2.20 Ah High Power Lithium-Ion Cells
Discharge Rate Characterization Testing
Temperature Range - 20 to - 50°C; Cells Discharged to 0.50V

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Rate</th>
<th>Current (A)</th>
<th>ACC-05</th>
<th>AVC-05</th>
<th>AFC-05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C/5</td>
<td>0.400</td>
<td>2.2422</td>
<td>7.284</td>
<td>102.69</td>
</tr>
<tr>
<td>- 20°C</td>
<td>11.40C</td>
<td>25.0</td>
<td>0.0581</td>
<td>0.0792</td>
<td>1.116</td>
</tr>
<tr>
<td></td>
<td>10.20C</td>
<td>22.5</td>
<td>0.0626</td>
<td>0.0921</td>
<td>1.297</td>
</tr>
<tr>
<td></td>
<td>9.1C</td>
<td>20.0</td>
<td>0.0717</td>
<td>0.1101</td>
<td>1.560</td>
</tr>
<tr>
<td></td>
<td>8.0C</td>
<td>17.5</td>
<td>0.0906</td>
<td>0.1310</td>
<td>1.800</td>
</tr>
<tr>
<td></td>
<td>6.8C</td>
<td>15.0</td>
<td>0.0954</td>
<td>0.1562</td>
<td>2.201</td>
</tr>
<tr>
<td></td>
<td>5.7C</td>
<td>12.5</td>
<td>0.1337</td>
<td>0.1876</td>
<td>2.676</td>
</tr>
<tr>
<td>- 30°C</td>
<td>11.40C</td>
<td>25.0</td>
<td>0.0133</td>
<td>0.0212</td>
<td>0.169</td>
</tr>
<tr>
<td></td>
<td>10.20C</td>
<td>22.5</td>
<td>0.0134</td>
<td>0.0212</td>
<td>0.175</td>
</tr>
<tr>
<td></td>
<td>9.1C</td>
<td>20.0</td>
<td>0.0169</td>
<td>0.0240</td>
<td>0.240</td>
</tr>
<tr>
<td></td>
<td>8.0C</td>
<td>17.5</td>
<td>0.0209</td>
<td>0.0233</td>
<td>0.326</td>
</tr>
<tr>
<td></td>
<td>6.8C</td>
<td>15.0</td>
<td>0.0258</td>
<td>0.0317</td>
<td>0.440</td>
</tr>
<tr>
<td></td>
<td>5.7C</td>
<td>12.5</td>
<td>0.0326</td>
<td>0.0437</td>
<td>0.609</td>
</tr>
<tr>
<td>- 40°C</td>
<td>11.40C</td>
<td>25.0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>10.20C</td>
<td>22.5</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>9.1C</td>
<td>20.0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>8.0C</td>
<td>17.5</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>6.8C</td>
<td>15.0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>5.7C</td>
<td>12.5</td>
<td>0.0016</td>
<td>0.0011</td>
<td>0.016</td>
</tr>
<tr>
<td>- 50°C</td>
<td>11.40C</td>
<td>25.0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>10.20C</td>
<td>22.5</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>9.1C</td>
<td>20.0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>8.0C</td>
<td>17.5</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>6.8C</td>
<td>15.0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>5.7C</td>
<td>12.5</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

BASELINE Electrolyte
1.2M LIPF6 in EC+EMC+MB
(20:20:60 v/v %) + 2% VC

1.2M LIPF6 in EC+EMC+MB
(20:20:60 v/v %) + 4% FEC

Energy (Wh/kg)
Energy (Wh/kg)
The MB-based systems are capable of supporting greater than 11C discharge rates at -20°C, with over 90% of the room temperature capacity being delivered. Whereas, only moderate rates can be support with baseline system under similar conditions.
A123 2.20 Ah High Power Lithium-Ion Cells
Discharge Rate Characterization Testing
Temperature = -30°C; Cells Discharged to 0.50V

- The MB-based systems are capable of supporting greater than 11C discharge rates at -30°C, with over 90% of the room temperature capacity being delivered.
- Whereas, negligible capacity delivered with the baseline system under similar conditions.
A123 2.20 Ah High Power Lithium-Ion Cells
Discharge Rate Characterization Testing
Temperature = -40°C; Cells Discharged to 0.50V
Discharge Rate Characterization Testing: Cell Discharged to 0.50V

Discharge Capacity vs. Temperature (C/5 Discharge Rate)

The MB-based containing FEC was observed to deliver good performance down to -60°C, being able to support high discharge rates.
A123 2.20 Ah High Power Lithium-Ion Cells
Discharge Rate Characterization Testing
Temperature = -60°C; Rate = C/5; Cells Discharged to 0.50V
A123 2.20 Ah High Power Lithium-Ion Cells
100% DOD Cycle Life Characterization Testing at 23°C
Test Articles (Three Different Electrolyte Variations)

Discharge Capacity (Ah)

Watt-Hour Efficiency (%)

- Although modestly higher capacity fade rates were observed with the MB-based electrolytes compared with the baseline, generally good cycle life characteristics were observed (i.e., over 90% of the initial capacity after 2,000 cycles).
- Observed trend (in increasing capacity fade rate): Baseline < MB+VC < MB+FEC
A123 2.20 Ah High Power Lithium-Ion Cells

100% DOD Cycle Life Characterization Testing at 40 and 50°C

Test Articles (Three Different Electrolyte Variations)

Cycling at High Temperature

Variable Temperature Cycling

- Generally good resilience to high temperature cycling observed with the MB+VC and MB+FEC systems.
- Good resilience to low temperature charging also observed (no apparent lithium plating).

Testing involves alternating between performing 20 cycles at -20°C (using C/10 charge and C/5 discharge) and performing 20 cycles at 40°C (using C/5 charge and C/5 discharge).
A123 2.20 Ah High Power Lithium-Ion Cells

100% DOD Cycle Life Characterization Testing at 40 and 50°C

Test Articles (Three Different Electrolyte Variations)

Discharge Capacity at 60°C

- Good performance has been demonstrated thus far when cycling continuously at +60°C
- SOA aerospace cells do not operate well at such temperatures without rapid capacity fade with the possibility of venting.

Percent of Initial Capacity at 60°C
SUMMARY and CONCLUSIONS

• **Performance of COTS A123 Li-ion Cells**
 - Excellent cycle life performance has been obtained to-date under a number of conditions (i.e., 100% DOD life at various temperatures and LEO cycling using different DODs)
 - Over 7,000 cycles demonstrated with a 100% DOD cycle life test using 2C rates
 - Excellent, stable LEO cycle life performance exhibited thus far.
 - Excellent rate capability demonstrated at the cell and battery level

• **Performance of A123 Cells Containing Low Temperature Electrolytes**
 - Demonstrated good cycle life and improved low temperature of A123 Systems LiFePO₄-based cells using methyl butyrate-based electrolytes:
 - 1.2M LiPF₆ EC+EMC+MB (20:20:60) + 4% FEC
 - 1.2M LiPF₆ EC+EMC+MB (20:20:60) + 2% VC
 - Demonstrated operational capability over a wide temperature range (-60° to +60°C)
 - Systems are capable of supporting >11C discharge rates at -30°C, with over 90% of the room temperature capacity being delivered.
 - The cells were observed to perform well down to -60°C, with 80% of the room temperature capacity being delivered using a C/10 rate.
Acknowledgments

The work described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA).