Atmospheric OH Response to the 11-year Solar Cycle

— Could the gap between model and observations be filled by new satellite data?

Shuhui Wang¹, Thomas J. Pongetti¹, Stanley P. Sander¹,
King-Fai Li², Yuk L. Yung², Mao-Chang Liang³,
Nathaniel J. Livesey¹, Michelle L. Santee¹, Jerald W. Harder⁴, and Marty Snow⁴

¹Jet Propulsion Laboratory, Caltech
²Division of Geological and Planetary Sciences, Caltech
³Research Center for Environmental Changes, Academia Sinica, TaiPei, Taiwan
⁴Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
Background

• During the 11-year solar cycle, the total solar irradiance (TSI) varies by ~0.1%. However, the relative changes in UV flux is much larger.

• OH, produced through UV photolysis, is expected to be affected by the solar cycle.

\[
O_3 + h\nu \rightarrow O(^1D) + O_2
\]
\[
O(^1D) + H_2O \rightarrow 2 \, OH
\]
\[
H_2O + h\nu \rightarrow OH + H
\]

• The mechanisms appear to be straightforward but far from well understood.

 UV change
 variability in source/sink species
 change in the shield effect

• The variability in OH and the related odd hydrogen chemistry affects the variability in middle atmospheric O$_3$ (HO$_x$ cycles destroy O$_3$).
AURA/MLS Measurements

- 2.5 THz module for OH measurement
 Global coverage (82S – 82N) on daily basis
 \(\sim 32 \) – 0.0032 hPa (~90% of total OH)
 [Pickett, 2006]

- Extensive Validation
 Air-borne and ground-based measurements, models
 [Canty et al., 2006, Pickett et al., 2008, Wang et al, 2008]

- Available data: Aug 2004 to Dec 2009, Aug to Sep 2011

Ground-based Measurements

Fourier Transform Ultra-Violet Spectrometer
Location — TMF, Wrightwood, CA (34.4°N, 117.7°W)
Altitude — \(\sim 2.3 \) km
Setup — tracker (heliostat), telescope, and FTUVS interferometer
Spectral region for OH measurements — \(\sim 308 \) nm
Diurnal observations of OH total column from 1997 to present
Hint of Solar Cycle Signal in MLS OH

TMF [29.5N, 39.5N]

Daily measurements (day)

[10N, 20N]

Daily measurements (day)

[50N, 60N]

Daily measurements (day)

[60N, 70N]

Daily measurements (day)
Extract the Solar Cycle Signal from OH Observations

a. FTUVS OH column

b. MLS OH column

MLS observation at [29.5°N, 39.5°N]

Annual mean

2-year FFT smoothed FTUVS OH
1-year FFT smoothed FTUVS OH

Long-term OH variability (%)

MLS OH annual mean variability
• Observed OH long-term variability is correlated with TSI records from multiple satellites.

• The trends generally agree.

• Observed OH variability is highly correlated with solar UV parameters — Lyman-α (121.5 nm) and Mg II index (core-to-wing at 280 nm).
WACCM Simulations

- WACCM (Whole Atmosphere Community Climate Model)
 Community Atmosphere Model (CAM3)
 66 levels (surface to mesosphere)
 5° longitude by 4° latitude
 MOZART3 (the Model for Ozone and Related Chemical Tracers)

- For solar variability, many current models adopt Lean’s parameterization [Lean, 2000].

- Standard WACCM3 uses modeled solar flux based on UARS/SOLSTICE UV measurements [Woods and Rottman, 2002; Marsh et al., 2007; Austin et al., 2008], which is close to Lean’s model.
The discrepancy between modeled (using Lean’s model, as shown, or UARS) and observed OH column variability due to the solar cycle is roughly a factor of 3.
Recent Satellite observations of this solar forcing may change our view

Solar Radiation and Climate Experiment (SORCE)
- launched on Jan 25, 2003 (645 km, 40° orbit)
- Measurements of incoming x-ray, UV, visible, near-infrared, and total solar radiation (TSI).
 The measured solar spectral irradiance (SSI) covers 95% of the spectral contribution to TSI.

Solar Stellar Irradiance Comparison Experiment (SOLSTICE)
- covers short UV 115 – 300 nm
- absolute accuracy, better than 5%
- data available at LASP (LISIRD; http://lasp.colorado.edu/lisird/)

Spectral Irradiance Monitor (SIM)
- covers 200 – 2700 nm
- absolute accuracy, better than 2%
- data at 310-2400 nm are available from LASP/LISIRD
- data at 200-310 nm are available upon request
Recent Satellite observations of this solar forcing may change our view

- Differences in solar spectrum between Apr 2004 and Nov 2007 derived from SIM and SOLSTICE data are much larger than Lean’s model.
 - In UV region, the difference is a factor of 2 - 6.
 - In visible, they show opposite signs.

- We made WACCM runs using SORCE solar data.
- Solar UV spectral variation is based on the combination of SOLSTICE and SIM.
- To extrapolate the published solar flux variability to the full solar cycle, we use Mg II (LASP long-term composite) as proxy to estimate scaling factors.
Gap between modeled and observed OH variability filled by SORCE data?

The model results using the SORCE solar flux variability as input give a OH variability that is much closer to observations.
Continuing OH measurements through the next solar max

- Ground-based OH measurements (FTUVS) will continue.

- MLS sub-instrument for OH is expected to perform measurements for one month in each of the coming years.

- These observations through the next solar max will provide extremely valuable evidence.
Back Up
The diurnal pattern of modeled OH columns (using SORCE solar data) are derived from the solar max year (1981) and the solar min year (1986) model outputs.

The solar cycle signal in OH column (% variability) appears to be larger when OH abundance is larger (at smaller SZA). The daily max (near noon) shows a solar cycle very close to the diurnal-averaged signal.