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Position Statement 

At JPL and across the spacecraft engineering community, the 
development of robust FDIR* capabilities has been more of an 
“art” than a “science”.  
We posit that there is significant benefit to be gleaned from 
applying greater rigor and a more systematic approach to 
FDIR system development, and that the burgeoning field of 
Model-Based Systems Engineering can provide useful 
techniques and tools to help us in this endeavour. 
 
 
 
 
* Note: In this package, we will use the somewhat more general terms 
“Fault Management” and “Fault Protection”. There are subtle distinctions 
between each of these terms, which we can discuss offline if there is 
interest. 
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What is Fault Protection? 

• As used and applied at JPL, Fault Protection is both: 
– A specific SE discipline (similar to EEIS or mission planning), whose 

activities should be separately scheduled and tracked, and 
– The elements of a system that address off-nominal behavior 

 
• Focused on the flight system, Fault Protection includes 

– Flight system fault detection and response 
– Failure diagnosis and recovery 
– Ground contingency planning and action 
 

• “Fault Management” is becoming the preferred term within 
NASA 
– Fault Protection is functionally equivalent to “Fault Management*”, but 

with a flight system bias 

6 * Per current draft of NASA-HDBK-1002, “Fault Management Handbook”; however, the definition remains in work… 



Fault Protection Context 

Time-Critical Activity/ 
Deployments 

Critical Activity/ 
TCM 

Critical 
Activity/ 
Launch 

Critical Activity/ 
Orbit Insertion/EDL 

On-Board FP Autonomy 

Mission Timeline 

Flight Hardware Layer 

Flight Software Layer 

Hardware Interface 

Application Specific (or Subsystem-specific) Functions 
System Functions 

Redundancy 
Cross-Strapping 

Flight System 
FSW 

Ground FDIR 
* Monitor/Trend 
* Diagnosis/Recovery 
* Contingency Plans / Procedures 
* Test-bed/Simulation 

Flight System FDIR 
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* Hardware Layer 

Surface 
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Fault Protection Scope 
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Fault 
Protection 

Flight System Fault Tolerance Design Strategies include: 
1) Graceful Degradation 
2) Application of Redundancy 
    - physical 
    - functional 
3) Fault Containment Regions 
    - limit propagation 
4) FDIR 

In-Flight Examples include: 
1) Robust Design Features 
    - Simple Design (e.g. fixed solar array or HGA) 
    - conservative design practices and performance 
 margins 
2) On-Board Autonomy 
     -  (e.g. attitude constraint checking). 
3) Post-Launch Operations Processes and Procedures 
   - These include the use of Flight Rules and executing 
     commands on a spacecraft simulation test-bed. 

For Example: 
1) EDAC 
2) FPGA TMR 
3) Active Redundancy 

For Example: 
1) OV/UV Detect Circuits 
2) Watchdog Timers 
3) On-Chip Built-in-Tests 
4) Memory scrubbing 

For Example: 
1) Sensor Threshold / Persistence 
2) Diagnosis / Response 
3) Re-plan & Continue Activity 
 

For Example: 
1) Telemetry Alarm Checking 
2) Telemetry Trending & Analysis 
3) Contingency Plans & Procedures 
 

Fault Avoidance Fault Tolerance 

Fault Masking FDIR 

Ground-
based FDIR 

Flight HW 
FDIR 

Flight SW 
FDIR 
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Missions and Capabilities 

• The set of missions historically flown by JPL has led to the 
development of robust autonomous FP capabilities 
– Short time-to-criticality, long light-times, limited contact with operations teams, 

no maintenance opportunities, time-critical events 
 

• FP capability fielded on Viking and Voyager, gradually increasing in 
scale to significant levels of complexity and autonomy 
– Cassini SOI is a good example of autonomous FP capability 
– JPL FP designs and processes formed by experience and lessons learned 

(some painfully) 
 

• MSL represents the most complex FP system JPL has built, with 
1097 monitors and 38 responses 

10 



Fault Protection “Family Tree*” 

11 *See reference [16], “OCE FSW Complexity Study, Appendix F. 



FP “Family Tree” – Detail 
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Typical Constraints and Driving Requirements 

• Operate with Limited Ground contact 
– Extended periods with no planned contact  (1 to 4 weeks) 
– Planned contact periods may be short   (1 to 2 hours) 
– Ground may not show for planned contacts (5% to 10%) 
– Large one-way light times    (minutes to hours) 
– Low downlink data rates    (10 to 40 bps) 

• Protect fragile elements of systems 
• Leverage existing flight system components 
• Protect/complete critical activities 

– Orbit insertion, entry/descent/landing, irreversible deployments 
• Long mission life 

– Survive without maintenance for primary missions lasting 5-11 years 
• Harsh environments 

– TID of 100 krad to 4 mrad 
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In-Flight Experience with Fault Protection 

• JPL missions have suffered relatively few permanent faults 
– Flight hardware for deep space missions has to be (and has been) very reliable 

 

• Fault protection activity during our missions has been most 
commonly caused by: 
– Operator errors 
– Fundamental design flaws, including software design flaws 
– False alarms due to unnecessarily tight thresholds 
– Unforeseen transient behavior due to interactions and/or variations in the operating 

environment, SEUs, etc. 
 

• Many examples where fault protection responded appropriately 
to transient behavior that was unexpected 
– Galileo (1990 - 1995):  Despun Power Bus reset caused by debris shorts 
– Magellan (1990 - 1992):  Software flaw that caused heartbeat termination 
– Cassini (1993):  Attitude estimator transient during backup Star Tracker checkout 
– MER Spirit Rover (2005):  Potato-sized rock jammed in right rear wheel 
– Dawn (2008):  Cosmic ray upset of attitude control electronics 
– Kepler (2009): Undervoltage due to unexpected power interactions at launch 14 



PAST EXPERIENCE IN DEEP SPACE FAULT PROTECTION 
PRESENT 
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Characteristics of JPL FP Approach 

• Single-failure tolerance (SFT) 
– No single point of failure will result in loss of mission 
– For some missions, waived in part or whole (e.g., single-string) 

 
• Limited use of reliability data 

– JPL does not use reliability estimates as a basis for meeting single-
failure tolerance requirements 

– Reliability estimates used for lifetime calculations 
– Reliability estimates used as supporting rationale in SFT waivers 

 
• Maintain failure tolerance after first failure 

– Clear temporary failures 
– Maintain failure tolerance in safing modes 
– Robustness to multiple orthogonal failures 

16 



Fault Protection System Engineering 

• On JPL flight projects, Fault Protection is a broad-based systems 
engineering task, and includes components of: 
– Mission Engineering 

• Timeline, Nominal, Critical and Time-Critical Activities 
– Project System Engineering 

• Systems Architecture 
– Flight System Engineering 

• Failure Analysis 
• Requirement/Design Flow-down to FSW, Subsystem SE, Reliability 
• Design, Test, and Operation of On-Board autonomous Fault Detection, Isolation, and Response logic 

responsible for maintaining vehicle health and safety. 
– Hardware Redundancy is often included 

– Mission Operations 
• Contingency Planning and Anomaly Resolution 
• Flight System Data Analysis and trending, state tracking, simulation 

– Mission Assurance 
• Reliability Analysis, Parts Qualification, Environments etc. 

 
• The FP effort is often managed like a ‘spacecraft subsystem’. 

– Reviews, budget/schedule (WBS), specific work products  
– Keeps effort from being lost or or mismanaged 

17 



FP Across the Project Lifecycle 
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Architecture 

Requirements 

Analysis 

Verify and Validate 

Conduct Reviews 

PHASES A/B 
Concept Development 
Preliminary Design 

PMSR MCR/TMC 

Pre-PHASE A 
Formulation/Proposal 

PDR 

PHASES C/D 
Detailed Design     
Build, Test and Launch 

PHASE E 
Operations 

CDR MRR CERR 

Initial Flight 
System Architecture 

Develop Top-level 
Requirements 

System-level Risk Analyses 

Develop FP  
Architecture 

Develop Functional  
Requirements 

Apply Systems Analysis  
Results to Design Req’ts 

Support Testbed and  
Simulation Development 

Develop Detailed Req’ts 

Identify/Develop Fault  
Test Cases 

Support Fault Testing 

Support Req’t V&V 

Support System  
Validation 

FP Ops activities 

*See reference [9], “Fault Protection System Engineering: Tasks and Products Across the Project Lifecycle” for more detail. 

FP PDR FP CDR 



Implementation Challenges 

• Show quantitative benefits to support engineering trades 
– Developing approaches to show value of additional HW and SW 
– Especially - assessing value of applying HW redundancy 

 
• Accurately estimate and control costs 

– Better define products and processes, and process metrics 
 

• Perform adequate V&V 
– Large failure space makes comprehensive testing infeasible 
– Working on tools and approaches to better verify and validate 
 

• Write relevant, decomposable requirements 
– Needs to be more than “Do FP” 
– Better integration with SE requirements process 

19 



FUTURE EVOLUTION 
FUTURE EVOLUTION 
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Directions of Current Research (1) 

• Advancing the “Science” of Fault Management 
– Formalization of concepts and terminology 
– Development of unified Theory of FM, leveraging prior work on state 

analysis and functional analysis 
 
 

 
 
 
 
 
 

• Improved Fault Management design process 
– Integration of FM design into “mainline” Systems Engineering activities 
– Application of Model-Based Engineering (MBE) techniques to document 

FM design and enable difficult (or previously impossible) analyses 
 21 

Fault Protection 

Failure Prevention Failure Mitigation Failure Tolerance 

Fault Avoidance 
Failure Prediction 

Fault Masking 
Failure Recovery Goal Modification 

Detect 

Classes 

Approaches 

FP Functions Locate Diagnose Isolate Recover 

FP Allocations 

Flight System Ground System 

HW SW HW SW Operators 

approaches implemented by 
FP operational function 

FP functions allocated to elements of 
flight and ground systems 

note: for a given failure, there 
are 3 possible ways of 
dealing with it… 

Contain 



Directions of Current Research (2) 

• Resilient system architectures 
– Development of system architectures that are inherently capable of fault 

avoidance, tolerance and recovery, rather than fault protection architecture 
as a “bolt-on” to nominal execution architecture. 
• Integration of fault protection within the nominal control loop 
• Continued migration of “cognizance” from operators to spacecraft 

 
 
 
 
 
 

• Advanced diagnosis & recovery algorithms 
– Leverages recent advances in model-based reasoning, hybrid 

(discrete/continuous) system modeling, discrete-event systems and 
Integrated System Health Management (ISHM) communities 

– Challenges: modeling expressivity, coherent integration of multiple 
representations and techniques, and scalability to large-scale systems 
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Protection 

Fault 
Protection 

Fault 
Protection 

Real Time 
Behaviors 

Real Time 
Behaviors 

Real Time 
Behaviors 

Real Time 
Behaviors 

Fault 
Protection 

Sequence 
Execution 

Goal Sequencer  
(Model-based Control Program) 

State 
Plant 

S 
Model-based Executive 

Msmts Cmds 

Goals on State Estimated State 



Directions of Current Research (3) 

• Formal verification methods, verifiable software, autocoding 
– MBE and model-driven software development provide greater opportunity for 

formal V&V techniques and automated code generation 
– Building up “libraries” of code-generation patterns for use in future missions 
 

• Fault management design environments 
– Development of model transformation technologies to integrate general-

purpose MBE languages (e.g., SysML) & tools with FM-specific design 
environments (e.g., TEAMS, SAFIRE) 

– Eventual automation of generation of FM analysis artifacts (e.g., FT, FMECA) 
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Analysis – fault trees 

Analysis – FMECAs 

Behavior – success trees 
Flight System Model 



Summary 

Past: 
• JPL has a long history of developing, deploying and operating 

effective Fault Management capabilities on its spacecraft 
• Our FM capabilities have evolved as our missions have become 

increasingly ambitious and complex, but this evolution was not 
rigorously “architected” over time 
 

Present: 
• JPL Fault Protection philosophies and goals are relatively 

straightforward and generally consistent from project to project   
• FP engineers end up knowing how the Flight System really 

works (and how it doesn’t work), better than anyone 
 

Future: 
• JPL is working with the FM Community to advance the state of 

the art and practice, to enable future classes of missions 
– Formalize theory, improve and standardize approaches and processes, 

develop tools (move from an “art” to a science) 
– Increase our collective ability to field safe and reliable systems 
– Enable formulation and development of more complex/capable systems 
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Opportunities to Continue the Discussion 

• 2nd NASA Fault Management Workshop (New Orleans, 
Louisiana; April/May 2012) 
– By invitation only 
– Contact Dr. Lorraine Fesq for more information: 

lorraine.m.fesq@jpl.nasa.gov 
 

• Fault Management sessions at AIAA Infotech@Aerospace 
2012 (Anaheim, California; June 18-21, 2012) 
– Call for Papers: www.aiaa.org/events/I@A 
– Abstracts due November 22, 2011 

25 
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NASA SMD FM HB: Core and System Terms 

• Core Terms 
• Degradation:  The decreased performance of intended function. 
• Anomaly: The unexpected performance of intended function. 
• Failure: The unacceptable performance of intended function. 
• Fault: A physical or logical cause, which explains a failure. 
• Root Cause: In the chain of events leading to a failure, the first fault or environmental cause 

used to explain the existence of the failure 

 
• System Terms 

• System: A combination of interacting elements organized to achieve one or more stated 
purposes. 

• State: The value of a set of physical or logical state variables at a specified point in time. 
• Behavior: The temporal evolution of a state. 
• Function: The process that transforms an input state to an intended output state.  
• Control Error: The deviation between the estimated state and the ideal intended state. 
• Nominal: The state of the system when the output state vector matches the intentions of the 

designer and/or operator. 
• Expectation: The most likely predicted state or behavior.  

6 
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Terminology Concept Diagram 

function(s) 

failure fault 

may be, from the 
perspective of  a 
prior event in a 
causal chain, a  

is explained by  

state 

system 

Has a set of 

anomaly 
is an 
unexpected 

is the unacceptable 
performance of intended 

behavior as a function of 
time is 

OR 

OR   

an incorrect 

which requires no 
further 
explanation is a  

objective(s) 

implement 

model(s) 

OR 

environment 

is explained by   

Has a 

describe 
expected used to select 

lower-level 

error 

AND 

is difference 
from ideal 

describe 
intended 

used to develop  

control 

is the unexpected 
performance of intended 

is an unacceptable 

may be  
invoked as a  

root cause 
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Fault – Failure Recursion 
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29 



Progression of Anomalous/Failed States 

Expected / 
Not 
Anomalous 

Unexpected / 
Anomalous 

Not Failed / 
Acceptable 

Failed / 
Unacceptable 

1 2, 3 
a 

b 

d, ii 

Anomaly, no Failure 
1) current value of state reaches an unexpected 

value  
2) review of system data indicates that 

model/expectation is invalid, and state is 
expected (expectations changed) [e.g., noise in 
RF link due to un-modeled effect] 

• model reviewed and parameters adjusted until 
model predicts current behavior (e.g., if RWA 
unhealthy, will have larger attitude errors) 

• review of system data indicates that this is an 
unacceptable value (indicative of a failure; the 
goal is adjusted)  

4 

Anomaly, with Failure 
a) current value of state unexpectedly reaches an 

unacceptable value  
b) model reviewed and parameters adjusted until 

model predicts current behavior (e.g., if IMU1 
unhealthy, will have attitude failure) 

• review of system data indicates that 
model/expectation is invalid, and state is 
acceptable (expectations changed)  

• recover intended functionality by restoring 
state to acceptable value and/or changing 
functional goal 

Failure, no Anomaly 
i. expected condition results in failure 
ii. recover intended functionality by restoring 

state to acceptable value and/or changing 
functional goal 

c 

i 
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detect 

diagnose 

adjust 

decide 

respond object-
ives 

expect-
ations 

system 
state 

failure 

anomaly 

failure 

incorrect expectation 

plan 

goal changes 

recovery actions 

changes to model 

unresolved 
anomaly 

Simplified Fault Management Loop 
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FM Functions 
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FM Completeness: Requires Top-Down and 
Bottom-up Analyses 

determine 
fault set 

determine set 
of failure 
effects 

determine set 
of failure 
scenarios 

list of local fault responses 

analyze set of 
failure 

scenarios 

Develop 
necessary FDIR 

determine 
system 

functions 

determine 
states 

associated with 
each function 

determine 
acceptable 

ranges 

analyze set of 
success 

scenarios 

for each failure scenario, 
assess acceptability  

(FDIR vs. FEPT) 

Top-down 
assessment 

Bottom-up 
assessment 

FDIR necessary to maintain 
acceptable functionality 
through all mission phases 

FDIR necessary to maintain 
acceptable functionality for each 

identified failure scenario 

for each failure effect, 
assess relevant mission 

phases/activities; add 
identified hazards 

for each failure 
mode, identify failure 

effects 

FMEA, FTA 

functional analysis, 
FTA, HA, IHA 

identify state(s) associated 
with each function 

determine the acceptable values of 
each state for relevant mission 
phases/activities (goals); 
acceptable values may change 
over course of mission 

for each mission phase/activity, 
determine FDIR necessary to 
maintain acceptable function 
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System States 

System states with 
identified Failure Modes 
(SFM) 

System states associated 
with objectives (SOBJ) 

Set of system states SOBJ – set of states must be 
assessed for compliance with 
failure tolerance and reliability 
requirements  

SFM – set of states referenced in 
the set of failure effects. 
Includes time to effect data 

SOBJ ^ SFM  – FM approach can 
include detection of failure mode 
causes (TTC can be inferred 
from FMEA data) 

SOBJ - SFM  – FM approach (if not 
ignored) limited to detection of 
anomaly in state (since no 
causes identified) 

SFM - SOBJ – set of “don’t care” 
states w.r.t. FM design? 
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Relevant Representations and Relationships 

• Success Trees 
• Represent system functions and functional 

decomposition 
• Conditions for success; "light" side 

• Fault Trees 
• Represent system functions and paths to failure of 

top event 
• Conditions for failure; "dark" side 

• Directed graphs 
• Represent components and connections/interfaces 
• Modeling of physical and logical connections 

enables formal modeling of failure effect 
propagation 

• Failure Modes and Effects Analyses (FMEA) 
• Description of the failure modes (mechanisms) and 

the immediate failure effect 
• Modeled failure effect propagation enables formal 

and complete development of all failure effects 
• Event Sequences 

• Describes system functionality as a function of time 
• Provides "triggers" to enable/disable elements of 

directed graph representation 
• State Machines (Not Shown) 

• Necessary to assess sequencing of system states, 
both nominal and off-nominal 
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Redundancy and Cross-strapping Guidelines 

Flight System Fault Tolerance Policy 
Development Considerations  

No Fault Tolerance Policy Fault Tolerance Policy 

Considerations for Adding Selected 
Redundancy to a Single String Design  

Cooperative 
Redundancy 

Cross-Strapping 
Considerations 

Exceptions 

Redundancy Types and Considerations  

Single 
String 

Selective 
Redundnacy 

Block 
Redundancy 

Functional 
Redundancy 

Exemptions 

Cross- 
Strapping 
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Fault Protection Components: 
Flight System FDIR / H/W Layer 

• Key JPL design practice requires definition of Fault Containment 
Regions (FCRs): 
– “A fault containment region (FCR) is a segment of the system, the design of which 

is such that faults internal to the fault containment region do not propagate and 
cause irreversible damage beyond the limits of the fault containment region. Note: 
Fault propagation can be both direct/obvious (e.g. damage, disabling) and 
indirect/subtle (e.g. contention, interference).” 

 
• Fault containment boundaries in the flight equipment are always drawn 

around each of the following [8]:  
1 - any redundant elements (either functional or block redundant). 
2 - any non-critical functions or equipment (e.g. any item where it's function is not 

required for mission success, such as engineering telemetry, instruments etc.).  
3 - any protective functions or equipment that are conditionally needed, (e.g. 

OV/OC protect) 
4 - any functional area or equipment the project requires to be fault tolerant.  
5 - any functional area or equipment the projects requires fault containment for 

development risk (e.g.  difficult to replace, long-lead, unique, or costly items are 
prime candidates for fault containment boundaries for development risk.) 

 
• FCRs are also important in Single String Designs 



Fault Management Architectures1 
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Model-based Programs Reason about State   

Embedded programs interact with 
the system’s sensors/actuators: 

• Read sensors  

• Set actuators 

Model-based programs interact with 
the system’s (hidden) state directly: 

• Read state 

• Set state 

Embedded Program 

State 
Plant 

Obs Cntrl 

Programmers must reason 
through interactions between 
state and sensors/actuators. 

Model-based Executives automatically 
reason through interactions between 
states and sensors/actuators. 

Model-based 
Embedded Program 

State 
Plant 

Estimated State 
Model-based Executive 

Obs Cntrl 
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System Under Control 

Command 
Sequence 

Typical Spacecraft Execution Architecture 

Commands Observations 

Sequence Execution, 
Real-Time Behaviors, 

& Fault Protection 
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System Under Control 

Command 
Sequence 

Typical Spacecraft Execution Architecture 

Commands Observations 

Fault Protection 
Fault Protection Fault Protection 

Real Time 
Behaviors 

Real Time 
Behaviors 

Real Time 
Behaviors 

Real Time 
Behaviors 

Fault Protection Sequence 
Execution 
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System Under Control 

Command 
Sequence 

Typical Spacecraft Execution Architecture 

Commands Observations 

Fault Protection 
Fault Protection Fault Protection 

Real Time 
Behaviors 

Real Time 
Behaviors 

Real Time 
Behaviors 

Real Time 
Behaviors 

Fault Protection Sequence 
Execution 

Time-tagged sequences of low-
level commands and “macros” 

… 

… with fault protection 
software running in 

parallel, ready to “take 
over” from nominal 

sequence execution when 
a fault monitor is triggered. 

… augmented with event-driven 
behaviors when necessary… 

… executed by a nominal 
sequencing engine… 
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System Under Control 

Command 
Sequence 

Limitations of the Typical Architecture 

Commands Observations 

Fault Protection 
Fault Protection Fault Protection 

Real Time 
Behaviors 

Real Time 
Behaviors 

Real Time 
Behaviors 

Real Time 
Behaviors 

Fault Protection Sequence 
Execution 

Sequence designers’ 
intent is not explicit in 

the sequence 

Complex interactions between these elements make 
it difficult and costly to validate flight software, and to 
have confidence that it will work reliably and robustly. 

Fault Protection is often considered an “add-on” capability, 
adjunct to the nominal control system and developed late 
in the project lifecycle, despite the fact that its design can 

uncover problems with the nominal control design. 

System requirements and 
understanding of behavior are 
not always directly traceable 
to the flight software design. 

The boundary between State 
Determination and State 

Control is sometimes blurred, 
with no explicit representation 

of “State” in the software. 
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System Under Control 

Control 
Specification 

Desirable Architectural Features 

Commands Observations 

Onboard 
Executive 

Simple state-based 
control specifications 

with explicit intent 

Automated reasoning through 
low-level plant interactions  

Fault-awareness  
(in-the-loop recoveries) 

Models that are 
writable/inspectable 

by systems engineers 

Separation of state 
determination from control, 

with an explicit notion of 
state at the boundary 



Titan Model-based Executive 
• Control layer has flexibility in achieving goal 
• Enables integration of tiered fault management capabilities 
• Enables integration of state-of-the-art autonomy software  

Plant
Commands

Configuration
goals

Observations

Goal Sequencer

State
estimates

Plant
Model

Control
Program

Deductive Controller

Model-based
Program

Model-based
Executive

Mode
Estimation

Mode
Reconfigurationestimates

State

Williams, B.C., Ingham, M.D., Chung, S.H., and Elliott, P.H., “Model-based Programming of Intelligent 
Embedded Systems and Robotic Space Explorers”, Proceedings of the IEEE, Special Issue on Modeling 
and Design of Embedded Software, Vol. 91, No. 1, Jan. 2003, pp. 212-237. 



Remote Agent Experiment on DS-1 

Deep Space One 

Livingstone: 
Diagnosis & 

Repair 

Mission 
Manager 

Scripted 
Executive 

HSTS: 
Planner/ 

Scheduler 

Goals 

Planning  
models 

Scripts 

Component 
models 

Remote Agent 
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Mission Data System Reference Architecture 

System 
Under 
Control 

State 
Control 

Hardware 
Adapter 

Mission Planning & Execution 

Control 
Goals 

Sense 

State 
Estimation 

Act 

Measurements 
& Commands 

Commands 

State 
Functions 

State 
Values 

Knowledge 
Goals 

State 
Knowledge 

Models 

Clear delineation 
between control 
system and system 
under control 

State is 
explicit 

Separation of estimation from control 

Models inform  
all aspects of 
control system 

System operation via 
overt, objective 
statements of intent 



Challenges and Opportunities 

• Challenges: 
– Closing the mid- to high-TRL gap 
– Must assure reliability (“bullet-proof” the implementation)  
– Changes the operational paradigm – need new tools, training 
– Cultural hurdles to acceptance of software technologies (“trust” 

issues) 
 

• Opportunities: 
– Autonomy is an enabler for certain missions 
– Evidence of significant cost savings in operations (EO-1) 
– Model-based design lends itself well to development via MBSE 

methodologies 
– Once general-purpose reasoners have been validated, V&V reduced 

to mission-specific models 
– Amenability to formal V&V 
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STAARS Auto-coder 

• UML Modeling 
– Explicitly capture the intent of the 

requirements 
– Formally capture the behavior in a model 
– Create a crisp notion of state 

• State-based Framework 
– Supports the UML standard 
– Allows developers to think and work with 

higher constructs – states, events and 
transitions 

• Auto-coding 
– Light-weight Java program 
– Reads in the Model which is stored in a non-

proprietary data format (XML) 
– Converts the input model into an internal data 

structure 
– Has multiple back-ends to support different 

project requirements 
• Test harness 

– Ability to run the model stand-alone – module 
test environment 

• Model checking 
– Automatic generation of Verification models 
– Exhaustively explore the state-space of the 

model 
– Checks for various correctness properties 

within the model 

JPL Autocoder
C++

C - QF2

C - QF3

C - MSL

Promela/
C

Python

Model.XML

Model.cpp

Model.c

Model.c

Model.c

Model.pml

Model.py

Model.c

Input
Parser



STAARS Auto-coder 

Controller.c

JPL Autocoder

Logged Events

(socket)

Controller.cpp/
Controller.c Controller.py

Target Board

Controller.o

LogEvent.o

Python Application
(GUI)

Controller.pml

Source: Garth Watney, JPL 



STAARS Process 



STAARS Benefits 

• Lessened the gap between System and Software 
Engineering 
– Formal specification of state behavior which can be implemented 

directly into flight software 
– Build rapid executable models for early prototype testing 

• Increased efficiency 
– Software developers can greatly increase their output 

• Increased maintainability 
– Rapid turn-around from specification changes to a software build 

• Increased reliability 
– Fewer defects are introduced 
– Auto generated code based on a reliable statechart framework that 

conforms to the UML statechart semantics 
• Full control of the process 

– Drawing tools can be swapped in and out 
– Autocoder can be customized for specific projects 
• Output in C or C++ 
• Add more UML features – Deferred events, etc 
• Currently based on the Quantum Framework’s Publish/Subscribe – but could 

be customized to be based on other Frameworks 
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