Access Control of Web and Java Based Applications

Kam S. Tso, Michael J. Pajevski, and Bryan Johnson
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

Abstract—Cyber security has gained national and inter-
national attention as a result of near continuous headlines
from financial institutions, retail stores, government offices and
universities reporting compromised systems and stolen data.
Concerns continue to rise as threats of service interruption,
unauthorized access, stealing and altering of information,
and spreading of viruses become ever more prevalent and
serious. Controlling access to application layer resources is a
critical component in a layered security solution that includes
encryption, firewalls, virtual private networks, antivirus, and
intrusion detection. In this paper we discuss the development
of an application-level access control solution, based on an
open-source access manager augmented with custom software
components, to provide protection to both Web-based and Java-
based client and server applications.

I. INTRODUCTION

Cyber security has gained national and international atten-
tion as a result of near continuous headlines from financial
institutions, retail stores, government offices and universities
reporting compromised systems and stolen data. Concerns
continue to rise as threats of service interruption, unau-
thorized access, stealing and altering of information, and
spreading of viruses have become more prevalent and serious
[1].

The Multimission Ground Systems and Services (MGSS)
Program Office at Jet Propulsion Laboratory (JPL) has
funded the DISA Security Service Task to develop capabili-
ties for protecting ground data systems as part of addressing
cyber security threats identified in a recent security risk
assessment [2]. This paper describes a prototype constructed
to prove out concepts for providing a common access control
solution that protects both Web-based and Java-based client
and server applications.

A. Background

The MGSS Program Office manages development of
the Advanced Multi-Mission Operations System (AMMOS)
software that is used in ground data systems of NASA/JPL
robotic space missions. The AMMOS software suite in-
cludes applications for planning missions, commanding
spacecraft, processing/displaying telemetry data, producing
science and engineering data products from instrument data,
providing access to science data products, and many other

functions [3]. Controlling access to these important functions
and information is crucial to the protection of highly valu-
able spacecraft, engineering data, and scientific information
involved in robotic space missions.

The Deep Space Network (DSN) Program Office at JPL
manages the DSN space communications infrastructure. The
DSN includes the uplink and downlink capabilities that
support spacecraft commanding and telemetry processing.
Protecting these capabilities are is very important to the
security of NASA/JPL space missions.

The MGSS and DSN Program Offices are jointly defining
the Deep Space Information Systems Architecture (DISA)
[4], which describes an application software integration
architecture and infrastructure services that include the DISA
Security Service. The goal of DISA is to modernize the
DSN and AMMOS through the application of industry best
practices in software architecture. The goal of the DISA
Security Service is to provide a robust and cost-effective se-
curity infrastructure that supports software applications and
the other infrastructure services (e.g., messaging, registries,
and information repositories). The goal of this paper is to
describe first steps in the development of access control
capabilities to be provided by the DISA Security Service.

B. Access Control

Access control seeks to restrict access to protected re-
sources by enforcing policies that state which subjects
can perform defined actions under known conditions on
approved resources [5]. Access control works at a number
of levels: hardware, operating system, middleware, and
application. In this work, our focus is on protecting network-
accessible application layer resources, which include ap-
plication, web content, and web services. Two common
access control models are the role-based access control
(RBAC), which restricts access based on the roles assigned
to users [6], and attribute-based access control (ABAC),
which is based on attributes associated with users [7]. In
both models, users are authenticated, their roles or attributes
are retrieved, and the retrieved roles/attributes are compared
against authorization rules in order to make authorization
decisions that are enforced by the access control system.

As access control plays an important role in protecting
business applications, many access management products
are marketed by enterprise software vendors and are also
developed by the open-source community. They provide au-
thentication and authorization services that usually include:

« centralized management of policy information,

o policy enforcement and policy decision,

« immediate effectiveness of role, attribute, and policy

changes,

« single sign-on over heterogeneous applications and

services, and

o federated sign-on across trusted networks of partners.

II. DISA SECURITY SERVICE ARCHITECTURE

The DISA Security Service (DISA-SS) provides common
access control capabilities for AMMOS software appli-
cations through a set of application programming inter-
faces (APIs) and network-accessible security services for
authentication, single sign-on, authorization checking, and
authorization policy management.

The DISA-SS utilizes on institutionally provided cre-
dential and identity services in order to leverage well-
defined and robust processes for vetting identities and is-
suing credentials that meet the exacting standards required
by NASA. During this first phase of prototyping the DISA-
SS architecture, only one identification and authentication
service is employed. Future prototyping will demonstrate the
use of identification and authentication services provided by
multiple institutions through the use of trust relationships
and federation techniques.

A. System Composition

The DISA-SS consists of the following components.

1) DISA-SS Core provides most of the DISA-SS func-
tionality. The core is comprised of two major parts:

o Access Management Core provides functionality
and network-accessible interfaces that software
applications can use for checking authentication,
checking authorization, retrieving identity infor-
mation, getting single sign-on (SSO) tokens, and
validating SSO tokens issued by the DISA-SS.
The Access Management Core also provides an
administration console (i.e., graphical user inter-
face) and command line tools for configuring
the Access Management Core and for managing
authorization policies.

e Audit Management Core provides network-
accessible interfaces for accepting event data from
software applications (and the other parts of the
DISA-SS). This part of the DISA-SS also provides
functionality for automatically analyzing event
data (i.e. audit data) as it arrives at the DISA-
SS and event data that is stored by the DISA-
SS. It also provides graphical user interfaces for

configuration of analysis processing and event
notification, managing audit data, and creating
audit data reports.

2) Software Libraries provide application layer security
capabilities for custom software applications via a set
of application programming interfaces. The software
libraries provide interfaces that applications can use
to call on the capabilities of the DISA-SS Core for
authentication, SSO, authorization, and logging.

3) Policy Enforcement Agents intercept service requests
(for Web Servers and Application Servers) and filter
out unauthenticated/unauthorized access attempts.

B. Example Topology

Figure 1 illustrates an example conceptual topology that
includes the DISA-SS components described above, pro-
tected resources (on Web Servers, Application Servers, and
in a Thick Client and Service), and institutional services that
include one or more credential and identity services.

The personnel shown in Figure 1 include:

1) Application Users: Human users of software applica-
tions.

2) Security Service Administrator: Personnel responsible
for configuring DISA-SS to use the appropriate insti-
tutional services, monitoring its operational status, and
using its management capabilities for authorizations,
event notifications, and audit data management.

3) Resource Manager: Personnel responsible for setting
up authorizations used at run-time to control access
to application resources. Developers may perform this
role during development of their software while op-
erations personnel perform the role in an operations
environment.

III. DISA SECURITY SERVICE PROTOTYPE

A prototype was constructed to prove out the architecture
described above. The prototype is based on an open-source
access manager (which provides the Core and Policy Agent
portions of the solution) and custom-developed software
libraries.

Many access management products are designed with a
focus on web portals and web applications, as shown in Fig-
ure 2. The web application is hosted either on a web server
such as Apache HTTP, or an application server/container
such as Apache Tomcat. A policy agent, which is a com-
ponent of the access management product, is installed on
the server host to protect the web application. Thus the
policy agent acts as the policy enforcement point (PEP) in
the typical access control architecture.

When a user or an external application requests access to
the web application, the policy agent intercepts the request
and enforces authorization policies. The enforcement is
facilitated with a single sign-on token which travels with the
request in a cookie. If the authentication token is not found

3

General Purpose Software
Institutional Services Security Service Admins
DISA SS Software & Resource Managers
Web/Application Server
Web
Custom Developed Browser
TSR] Protected Applications ~ E
1
1
| Web Server A :
1 1
i DISASS Ao
% ! Web Policy !
! | Browser ~| Enforcement E
AppA | Agent \ Protected '
User . Pages E R, PR ;
1 H I 1
i : | i
! 1 i Credential 1
E : i Service(s) d
I 1
! : 1 1
! ! 1 1
1 1
Application Server ! i !
| Thick Client A E DISA S ——> sgj::g{s) :
; DISA SS i Security ! !
' DISA 88 Policy ! Service (SS) ! '
i Software ~| Enforcement ! Core i i
3 Library Agent i Institutional Services !
AppB 1 :
User i L !
1 L. 1
' Protected !
! Serviets !
i e — i
i i
1 1
' [Thick Service i
1 1
I
| DISASS !
I Software !
i Library i
i i
1 I
i i
Figure 1. DISA Security Service Example Topology
Access Manager to obtain authentication for the request to
roceed.
Web P
Eli In Figure 2 a Lightweight Directory Access Protocol
"~ (LDAP) server is used for authentication. Access managers
. _— can also be configured to use other authentication modules
S uthorization . .
Authentication ~~=a. such as Kerberos and Active Directory. Upon successfully

B

Figure 2. Access Control of Web-Based Application

in the request, the policy agent redirects the request to the

authentication a cookie with the SSO token is returned
to the browser. This cookie will then be available to the
policy agent in subsequent requests. The policy agent sends
the SSO token, requested URI, and action to the Access
Manager to obtain an authorization decision. This design
allows access control decisions to be made by the Access
Manager as a policy decision point (PDP) instead of that
logic being coded into applications. The Access Manager
evaluates the request against the set of defined polices in
making the decision of allowing or denying access to the

resource.
Most access managers also act the policy administrative
point (PAP) in that they provide a web console for admin-
istrators to manage authorization policies. A policy defines
the rules that specify a user’s access privileges to a protected
resource. A policy usually comprises the following items:

o Rules: A rule contains the universal resource identi-
fier (URI) of the protected resource, an action which
operates on the resource (e.g. GET and POST), and a
value defines the permission for the action (e.g. Allow
or Deny).

e Subjects: A subject could be a user, group, role, or
application requesting the access.

« Conditions: A condition allows constraints to be defined
on a policy, such as time of day and IP address from
which access is made.

IV. DISA SECURITY SERVICE REUSABLE COMPONENTS

Access managers work out-of-the-box for Web applica-
tions but not for thick clients or standalone servers developed
in C/C++ or Java. Unlikely Web browsers, thick clients do
not support HTTP redirection nor handle cookies unless they
implement those web browser functionalities. On the other
hand, no known policy agents are available for protecting
standalone servers. In anticipation of the needs of these
custom applications, most access managers provide a Soft-
ware Development Kit (SDK) for applications to access their
authentication and authorization services. Some of them also
expose the services as RESTful web services. REST, which
stands for Representational State Transfer, is an architectural
style which uses the HTTP operations, GET, POST, PUT,
and DELETE, in order to act on resources, represented by
individual URIs [8].

The DISA Security Service makes use the RESTful web
services to develop reusable components to enable think
clients and standalone servers for access control. The DISA-
SS components not only simplify the interface to the under-
lying Access Manager, but also simplify the ability to swap
it out with another similar access management product.

The DISA Security Service reusable components are
implemented in Java and include the following packages:

e Credential
The Credential package is used to establish the user’s
identity. Currently it supports the basic username and
password credential, as well as X.509 certificates and
Java Keystores.

e Connection
The Connection package is used to establish secure
SSL/TLS HTTP connection to the application servers
and REST client connection to the Access Manager.
The package also include socket and database connec-
tions over SSL/TLS. The secure connections ensure
transmitted data are encrypted using the cipher suites

recommended by the National Institute of Standards
and Technology (NIST) [9].
e Access Control

The Access Control package provides Java applica-
tion programming interfaces (APIs) for authentication
and authorization services. It uses the Credential and
Connection packages to communicate with the Access
Manager to provide such services.

The DISA Security Service components have been used
in prototyping two types of applications, custom Java thick
clients for accessing resources protected by a policy agent,
and standalone Java servers protecting network resources.

A. Thick Client Application

Most of the applications in JPL Advanced Multi-Mission
Operations System (AMMOS) are not web-based but custom
Java applications [3]. Some of the server side applications
provide access to data through RESTful web services or
HTTP protocol and they are hosted by Java EE containers.
This type of server applications provides the opportunity
for resources to be protected by the policy agent. However,
the clients are usually written as thick Java applications
to meet the requirements of rich graphical user interface
and visualization capabilities [10]. Unlikely web browsers,
these client applications do not have built-in capabilities
for responding to HTTP redirection, handling cookies, and
displaying login prompts via a web page as expected by the
access management products. The DISA-SS reusable com-
ponents allow these clients to access the protected resources
without implementing those browser functionalities.

Java Client

DISA-SS API

Authorization
Authentication

Figure 3. Access Control of Think Client and Container Server
Figure 3 shows how a Java client makes use of the DISA-
SS APIs to work under the access control environment.
In this configuration the server application is protected by
a policy agent. The benefit of using the policy agent is
that access control to resources is externalized, thus the
server application does not need to make any code changes
for or even aware of access control as needs change. It

is all handled by the agent and the access management
infrastructure.

In this use case the main flow of events are:

1) The client obtains credential from the user, which
currently is the username and password.

2) The client uses the DISA-SS authentication API to
send the credential to the Access Manager for authen-
ticating the user.

3) Upon successfully authentication an SSO token is
returned to the client.

4) A HTTP cookie is created from the SSO token and
sent with the request to access protected resources.

5) The policy agent obtains authorization decision from
the Access Manager using the cookie.

6) If access is granted, the request is executed by the
server application and responds with the result. Oth-
erwise, the policy agent sends back an error message.

B. Standalone Server Application

Standalone server applications that do not run under Java
EE application containers or servers are commonly used in
AMMOS. There is no policy agent supporting these stan-
dalone server applications as access management products
only provide agents to certain Java EE application containers
and servers.

Figure 4 shows how a standalone Java server application
uses the DISA-SS reusable components to protect itself from
unauthorized access by a thick Java client application. In this
use case the main flow of events are as follows.

Java Client

DISA-SS API

Authentication

Figure 4. Access Control of Thick Client and Standalone Server

1) The user of the client will first be authenticated with
the Access Manager using the DISA-SS authentication
API, as described in the thick client use case.

2) After obtaining the SSO token upon successful au-
thentication, the client passes the token to the server
application whenever a request is made. How the token
passes to the server is dependent on the type of the
connection between the client and the server. If it
is a HTTP connection the token can be passed as a

cookie. For other types of connection, such as socket
or Remote Method Invocation (RMI) calls, the token
can be included as part of the data sent to the server
application.

3) The server application, after receiving a request with
the SSO token, can get an authorization decision from
the Access Manager using the DISA-SS authorization
API. This API takes three parameters: SSO token, re-
source, and action. The resource is usually represented
by a URI but in this case it can be any string value
since the server is not a web application. The action
can also be any string value decided by the server
application based on the request.

4) The Access Manager makes the decision based on the
subject, resource, and action. The subject is obtained
from the SSO token. If the Access Manager can find a
policy that matches the subject, resource, and action,
it can grant access to the protected resource. Since
the matching is based on comparing string values of
the requested resource and the policy resource, we can
assign any value appropriate to the application.

V. CONCLUSIONS

In this work we successfully demonstrated that we can
extend an open-source access manager designed for web
applications to meet the needs of Java thick clients and
standalone servers that are commonly used in the JPL
AMMOS environment. The DISA-SS reusable components
will greatly reduce the effort for each AMMOS subsystem
to develop its own access control strategy.

Through this prototyping effort we have found several
shortcomings in the open-source access manager we evalu-
ated:

e The Access Manager compares the policy resource
URL to the requested resource URL to determine policy
decision. Although wildcards are supported in match-
ing the URL strings, variables and operations are not
supported, making it impossible to define sophisticated
policies. For example, if we want a policy to allow only
the user who created a resource to delete that resource,
we have to create a policy for each user.

o The performance of the Access Manager is a concern
for some applications, such as message queue that could
be required to process thousands of messages in a
second. Fast policy decisions cannot be met if round-
trips to the Access Manager are required frequently.
Policy decisions can be cached by the policy agent, but
under the current implementation, even a policy that is
applied to a group of users still needs a new decision
when accessing the same resource.

Despite of these shortcomings, our evaluation has shown
the open-source Access Manager to be a promising access
management product. We plan to continue the evaluation
with other authentication methods such as Kerberos, digital

certificates, and RSA Securld. We also plan to develop
the DISA-SS reusable components in other programming
languages such as Python and C++.

VI. ACKNOWLEDGEMENTS

The work described in this paper was funded by the
JPL Multimission Ground Systems and Services Office
and performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National
Aeronautics and Space Administration. The authors would
like to acknowledge contributions from members of the
DISA-SS team: Dave Childs, Gary Ramah, Henry Hotz, and
Jonathan Jaffe.

REFERENCES

[1] T. Kellerman, “Cyber-threat proliferation: Today’s truly per-
vasive global epidemic,” IEEE Security and Privacy, vol. 8,
no. 3, pp. 70-73, May 2010.

[2] A. Ko, K. Tan, and F. Cilloiz-Bicchi, “Cyber threat assessment
of uplink and commanding system for mission operation,”
in Proc. 17th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC 2011), Pasadena, CA, Dec.
2011.

[3] A. Ko, P. Maldague, D. Lam, T. Bui, and J. McKinney,
“The evolvable Advanced Multi-Mission Operations System
(AMMOS): Making systems interoperable,” in Proc. AIAA
SpaceOps 2010 Conference, Huntsville, AL, Apr. 2010.

(4]

(5]

(o]

(7]

(8]

(9]

(10]

Jet Propulsion Laboratory.
information services architecture.
http://disa.jpl.nasa.gov/

(2011) DISA: Deep space
[Online]. Available:

R. Sandhu and P. Samarati, “Access control: Principle and
practice,” IEEE Communications Magazine, vol. 32, no. 9,
pp- 4048, Sep. 1994.

D. Ferraiolo and D. Kuhn, “Role based access control,” in
Proc. 15th National Computer Security Conference, Balti-
more, MD, Oct. 1992, pp. 554-563.

D. Kuhn, E. Coyne, and T. Weil, “Adding attributes to role
based access control,” IEEE Computer, vol. 43, no. 6, pp.
79-81, 2010.

F. Rosenberg, F. Curbera, M. J. Duftler, and R. Khalaf,
“Composing RESTful services and collaborative workflows,”
IEEE Internet Computing, vol. 12, no. 5, pp. 24-31, Sep.
2008.

C. M. Chernick, C. Edington III, M. J. Fanto, and R. Rosen-
thal, “Guidelines for the selection and use of transport
layer security (TLS) implementations,” National Institute of
Standards and Technology, Gaithersburg, MD, NIST Special
Publication 800-52, Jun. 2005.

L. Hall and P. Francel, “Multi-mission technical subsystem
management measures taken and lessons learned,” in Proc.
Aerospace Conference, Big Sky, MT, Mar. 2011.

