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Motivation 



Navigation vs Localization  
 In this talk they are interchangeable 

 They both answer to a very primitive question: 
where am I? 

 Who wants to know?  
 Commercial transportation systems (planes, ships, etc) 
 Personal transportation systems (cars, trucks, etc) 
 Robots (UGV, UAVs, …even Rumba!) 
 People (soldiers, first responders, parents obsessing over 

kids!,  etc) 
 Assets 



Inertial Sensors  
 Inertial Measurement Unit 
 Oldest sensor used for navigation (compass is considered an aid) 
 Measures acceleration and attitude rate 
 Biased and noisy 
 High frequency (>500Hz), necessary for control of fast dynamics 

vehicles 
 Position errors grow cubically with time! The  IMU has been often 

“aided” 

As size decrease, the biases increase  larger position error 

Size Weight Bias Cost  

tactical 
grade IMU 

~3”x3” ~1kg ~1deg/ho
ur 

~10K$ 

IMU on 
chip 

~penny ~10gr ~1000deg
/hr 

~500$ 



GPS: a Gift from the DOD  
 Global Positioning System  
 Range measurement to satellite 
 Bounded error in absolute position 
 Frequency 4-1Hz 

 

GPS and IMU are “complementary”:  
• GPS isn’t biased and has low frequency information 
• IMU is biased and has high frequency information  
 

By fusing them we get best of both! 



(Traditional) Sensor Fusion Filter 

Strap-Down 
 (triple integrator)  IMU 

E K F with 
error states 

GPS 

Resets  

Aid  

Position, velocity, attitude Acceleration and 
angular rate in 
body frame 

GPS effectively 
encouraged 
development of small 
scale IMUs. Even an 
IMU on chip can still 
be accurate enough 
(for certain 
applications) when 
fused with GPS! 

Because of the causality and least-square nature of the filter, any 
erroneous measurement can irreparably compromise the filter 
integrity. 



GPS-denied Environments 
 We are spoiled!  
 GPS-denied environments are not that  
     uncommon 
 Underwater 
 Mines 
 Tree canopies 
 Urban canyon (I bet you know about this when dealing 

with your Garmin) 

 
What to do? 



Vision 



Why Vision? 
 It is a passive sensor 
 Low power, weight, and cost 

 Data/cost ratio is high 
 Navigation, obstacle avoidance, recognition 

 Image processing can be computationally expensive 

 Some limitation on applications 
 night time operations, texture free environment  
 

 



Fusion: an example 

Strap-Down 
 (triple integrator)  IMU 

E K F with 
error states 

GPS 

SLAM/PTAM 
 (map on the fly) 

Odometry 
(dR/dT) 

Resets  

Aids  

Position, velocity, attitude Acceleration and 
angular rate in 
body frame 

Vision based localization algorithms: 
Odometry  

Similar to a low rate IMU, it will drift 
Filter can become inconsistent 

SLAM (Simultaneous Localization And Mapping) 
Drift is significantly trimmed when loop closure is 
detected 
Computationally intensive 
Filter can become inconsistent 

nav solution can be used 
to seed the vision 
algorithms 



Building Blocks 
 From images we can  
 Build a map of the world and navigate in it (SLAM) 
 Compute the frame to frame motion (visual odometry) 

 In both cases there are some common steps 
 Feature extraction  
 (at different scale, might involve the whole image) 

 Feature matching (Left to Right, T1 to T2) 
 False matches (outliers) rejection  

 Challenge: outliers are very common and often there 
are more outliers than inliers. 
  



Feature Extraction 
 Point features in 2D (monocular and stereo) 
 SIFT/SURF, and Harris corners 
 SIFT and SURF features have a 128-elements vector as descriptors 
 Harris corners do not have a descriptor, they are less robust to changes in 

light, scale, and rotation but computational load is reduced 

 Whole image: template tracking 

Find features that are unique and 
easily distinguishable is key 



Feature Matching 
 Points features 
 SIFT/SURF : All-to-All distance of descriptors is 

computed, the pairs with the smallest distance (unique 
enough) are considered matches. False matches do occur. 

 Harris corners:  
 KLT tracker, it involves solving a minimization problem and it is 

computationally expensive. False matches do occur. 
 SumOfDifferences, least computationally expensive, more prone to 

false matches 

 Template tracking 
 Best approach for small images and feature-challenged 

environments 
 

Matching is computational expensive 
False matches do occur 

Could be driven by IMU prediction 



Visual Odometry and Outliers Rejection 
 Motion can be approximated as an incremental rotation and translation 

 If the matched features are static, their new locations in the new image have to be 
coherent with the platform motion (dR and dT) 

 Matched features can be used to compute dR and dT which is often argmin 
of a non convex minimization problem: how do we get a good initial 
condition? 

 RanSaC: Random Sample Consensus 
 Hypothesis generation and testing 
 Solve for dR and dT using a small set of features, many times 
 Pick the one that agrees with most of the features 

 Refinement 

 

 VO is a measurement as well as an outlier rejection method  
 

dR, dT 

t1 

t2 



 SLAM (Simultaneous Localization And Mapping) 
 Stand alone or aid to larger navigation filter 
 (Kalman) Filter at its core, solves for position of robots and of map 

(position of feature points) that it sees as it moves along 
 Map becomes large and not manageable, lots of ink spilled to improve its 

efficiency  
 Drift is eliminated as the robot returns to previously visited location: loop 

closure. 

 PTAM (Parallel Tracking And Mapping) 
 Stand alone or aid to larger navigation filter 
 Bundle adjustment method at its core  (non-convex optimization), 

position of features across multiple frames are the unknowns 
 Developed for monocular systems and has two threads 
 Mapping thread  

 solves for features location (map) using bundle adjustment 
 Filter thread  

 fuses gyros and features location provided by the mapping thread  
 provides 6DOF position updated between mapping threads cycles 
 

SLAM vs PTAM 



Applications 



One of each … 
 Legged Squad Support System (LS3, next 

generation Big Dog) 
 Fusion of stereo vision odometry and IMU 

 Quadrotor 
 Fusion of monocular PTAM and IMU 



Legged Squad Support 
System (LS3) 

Perception for High-Speed 
Legged Vehicles 



LS3 Overview 
 Objective:  
 A robot that goes anywhere a dismount soldier goes, carrying 400lbs, 

covering 20 miles, and lasting 24 hours 

 Team:  
 Boston Dynamics, Bell Helicopter, Woodward HRT, AAI Corporation, 

CMU/NREC, JPL 

 Sponsor:  
 DARPA (TTO), U.S. Marine Corp Warfighting Lab (MCWL) 



Perception Objectives 
 Perception sensors are located in the head 

Tracks 
Leader 

Detects 
Tree 

Detects 
Steps 

Follows 
Path 

Detects 
Slope 

Detects 
Rock 

Leader Tracking 
Obstacle Detection 
Terrain Map 
Localization 
Environment 

2 - 45m, 0.5m err 
Range: 20m, Diam: 4”  
Range: 5m, Res: 3-5cm 
< 0.5m per 50m 
Night, rain, sand, ford 



LS3 in action 
 LS3 follows leader or navigates its own path. 
 Prototype unifies all core perception, behavior, and robot control.  



Visual Sensor Field of View 

LIDAR: 5 meters shown, 50m range, 270°HFOV Stereo Camera and Illuminators: 5 meters, 97°HFOV 

Color Cameras: 5 meters shown, 180°HFOV 

NIR Cameras: 50m range 
30°HFOV, 30°up, 14°down VFOV,  

panned 200° 



Localization Filter Overview 
 Asynchronous EKF filter 
 Error states: position, velocity, attitude, and IMU biases 
 Prediction step: IMU (tactical grade) integration at 600Hz 
 Correction step: triggered when a measurement is available 

 Measurements (autonomously triggered) 
 ZUPT: when stationary to prevent attitude drift 
 Visual odometry in nominal conditions,  leg odometry when 

Visual odometry  fails 

 “Gates” 
 Hard filter reset when engine is off  
 Residual tests on visual odometry  and leg odometry 
 Fall detection to further shield the filter from erroneous leg 

odometry measurements 

 



Localization Performance 
 Ground truth provided by differential GPS or surveyed markers 

Description Run time Distance x-y % error*  z max error 

(a) Asphalt/grass 350s 150m 1% 0.2m 

(b) Asphalt/grass 1200s 300m 1% 4m 

(c) Asphalt/grass with falls  1700s 800m 0.5% 1m 

(d) Asphalt 350s 150m <1% 0.1m 

(e) Asphalt 270s 100m 1% 0.2m 

(f) Asphalt  650s 400m <1% 0.5m 

(b) (c) * = percent of distance 
traveled at steady state 



Micro Autonomous Systems & Technology 



MAST Overview 
 Objective: 
 To develop autonomous, multifunctional, collaborative 

ensembles of agile, mobile microsystems to enhance 
tactical situational awareness in urban and complex terrain 
for small unit operations. 

 Team: 
  BAE Systems, CalTech, GTech, JPL , Harvard 

University, MIT , North Carolina Agricultural & Technical 
State University , UC Berkeley , U of Maryland , U of 
Michigan, U of New Mexico , U of Pennsylvania  

 Sponsor:  
 ARL (Air force Research Laboratory)  

MAST: Micro Autonomous 
Systems & Technology 



Autonomous Landing with PTAM 
 Fast dynamics vehicle 

 Exploration, detection of 
landing platform and landing, 
all fully autonomous, 
running on-board in real 
time 

 PTAM locates the vehicle 
within a pre-built local map 
(~10Hz) 

 Autonomous navigation uses 
6DOF PTAM pose as input to 
the PID to control the vehicle 
position 

 

PTAM 

PID 
controller 

Desired 
trajectory 

propellers 



Results 
 



A Sloppy Controller? 
 Symptom:  
 the controller seems “sloppy” even though PID gains were 

tuned (… a lot!) 
 ~15cm amplitude oscillation around target point 

 Cause:  
 PTAM is computationally expensive and is available with 

~0.1sec of latency 

 Solution:  
 Fusion of on board inertial sensor and PTAM! 
 



Sensor Fusion Filter Performance 

Filter input 

Truth 

on board 
computed 
position (OLD) 

Position x (m) vs time (sec) 



Sensor Fusion Filter Performance 

Filter input 

Truth 

Filter 
Output 
(NEW) 

on board 
computed 
position (OLD) 

Position x (m) vs time (sec) 



Sensor Fusion Filter Performance 

Filter input 

Truth 

Filter 
Output 
(NEW) 

on board 
computed 
position (OLD) 

Position x (m) vs time (sec) 

The delay is eliminated! 

Velocity x (m/s) vs time (sec) 
Filter 
Output 
(NEW) 

on board 
computed 
velocity (OLD) 

On board 
implementation is in 
progress 



Conclusions 
 Navigation has a wide range of applications 

 GPS and  inertial sensor complementarity has been 
exploited in the the fusion algorithms 

 Vision offers an appealing aid to inertial sensors in 
GPS-denied environments 

 Applications 
 LS3: vision and IMU achieve state of the art performance 

in visual odometry 
 Quadrotor: IMU mitigates latency of vision 
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