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ABSTRACT

Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities.
Unlike commonly used Fabry-Pérot cavities, however, they are filled with a bulk medium whose properties have
a significant impact on the stability of its resonance frequencies. In this context, thermal and other refraction
index fluctuations of the medium induce additional frequency instability that has to be reduced to a minimum.
On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and
acceleration. This feature is essential when the cavity operates in a non-laboratory environment. In this paper,
we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-
and acceleration-induced frequency fluctuations.
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1. INTRODUCTION

Ultra-high @ whispering gallery mode (WGM) disk-resonators are expected to play an ever-increasing role in
metrological applications. In these resonators, photons are trapped by total internal reflection into the torus-
like eigenmodes, i.e., whispering gallery modes. These optical resonators of millimeter-size are characterized
by significantly long photon lifetimes (> 1 microsecond), and accordingly, ultra-narrow resonance frequency
linewidths. This feature is indeed highly desirable in a wide range of applications from frequency metrology,
spectroscopy, sensing, or ultra-low phase noise microwave and terahertz generation.

In many of these applications, the frequency stability of the resonator is critical. Fluctuation in the refraction
index and the cavity dimensions will result in jitters and drifts in the resonance frequencies. Both internal and
environmentally induced fluctuations will ultimately limit the noise floor for the frequency stability. Thermal
noise limits in WGM resonators have been discussed before.!»? While the small size of typical WGM resonators
make them less sensitive to mechanical disturbances, vibrations and accelerations can still sufficiently deform
the cavity and shift the eigenmode frequency.

Effectively, the resonance frequency wy of a cavity generally obeys a simple relationship of the form wy x ¢/na,
where c is the velocity of light, n the refraction index at the frequency wp, and a is a characteristic dimension
of the resonator. As a consequence, any fluctuation of refraction index or cavity geometry induces a frequency
fluctuation dwgy/wg = —dn/n — da/a. Hence, metrological applications require the unavoidable fluctuations da
and dn to be reduced to a minimum.

To illustrate the mechanical disturbance impact, consider the mere action of gravity on a WGM calcium
fluoride disk-resonator with 5 mm diameter and 0.5 mm thickness (see Fig. 1). It can be shown that the disk
resonator in this typical stem-mounting configuration undergoes a radius change of few pm (this is ten times
smaller than the size of the hydrogen atom), and the corresponding resonance frequency shift is already as large
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Figure 1. An ultra-high-QQ magnesium fluoride disk resonator.

as ~ 200 kHz (for light with a wavelength of 1550 nm). Metrology applications require a frequency precision of
the order of 1 Hz, equivalent of cavity radius stability better than 1 fm, which is the size of the proton.

Frequency stabilization of lasers locked to passive Fabry-Pérot optical cavities nowadays routinely reaches
at ~ 1071 /Hz'/? (see refs.**). Performances so far with WGM disk resonators are typically of the order of
~ 10712 (see ref.®), but the thermal limit down to ~ 10~!* has already been reached.®

To achieve a frequency stability comparable of Fabry-Pérot reference cavities, especially when practical devices
are considered, we will have to address the mechanical instability. A key challenge is therefore to design clever
mounting architectures capable of reducing and eliminating environmental fluctuations of mechanical nature in
WGM disk-resonators. An interesting solution relies on the concept of “neutral mounting”, where the mounting
forces are distributed in a way such that the deformation of the optical cavity is null in a given direction, regardless
of their intensity.” As explicitly displayed in Fig. 2, the null force-to-displacement conversion guarantees that
mechanical fluctuations are not transferred to a cavity-length deformation, that is, to the resonance frequency.

The aim of this work is to present a neutral mounting architecture for WGM resonators. In particular, we
will show that clamping a WGM disk between two coaxial cylinders induces a radial displacement field that
is null in a neutral circumference path. This optimal trajectory, that is unaffected by the mounting force, can
therefore host the WGMs and preserve their eigenfrequencies from mechanical fluctuations.

The plan of the article is the following. In the next section, we will explain the mounting architecture and
discuss its advantageous properties from a theoretical point of view. Section 3 will be devoted to the finite-
differences numerical simulations of the stress, strain and displacement fields inside the disk, in order to evidence
the validity of this neutral mounting scheme. These simulations will also enable to understand the potential of
this architecture for the inhibition of low-frequency vibrations. These simulations will also enable to understand
numerically the influence of accelerations on the reference eigen-frequency, and thereby evaluate the typical ac-
celeration sensitivity of the mounted resonator. The last section will conclude the article.

2. CONCEPT OF NEUTRAL MOUNTING CONFIGURATIONS

The design of a neutral mounting architecture is not straightforward in WGM disk-resonators, as mounting such
disks is subject to a number of stringent constraints. The most important one is that the rim of the disk (lateral
surface) has to be free. Any mechanical contact with the rim could preclude the propagation of whispering
gallery modes. The mounting scheme must also allow physical access of a fiber or prism to the edge of the disc
for optical coupling.

Therefore, WGM disk resonators can only be loaded either through tangential stresses applied onto the
surface of an inner hole (where far from the spatial location of the WGMs), or through normal stresses exerted
on the bottom and top surfaces of the disk.
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Figure 2. Illustration of the principle of neutral mounting, as explained in ref.” The solid (discontinuous) circle (ellipse)
stands for the unloaded (loaded) spherical cavity. The arrows indicate the mounting forces. (a) The unloaded sphere,
with the horizontal axis (diameter) being the reference length of a Fabry-Pérot cavity. (b) Vertical mounting. The sphere
is elongated horizontally, and the reference cavity length is larger. (c) Horizontal mounting. The sphere is elongated
vertically, and the reference cavity length is shorter. (d) Neutral mounting. The sphere diameter has a zero displacement
along the axis of interest. The mounting force may fluctuate without inducing undesirable cavity length fluctuations.

The first strategy, which is somehow equivalent to the mounting architecture of Fig. 1. It is easy to foresee
that in case of vertical vibration, the free outer edge (where the WGMs are located) would undergo relatively
large deformations, resulting in significant frequency shifts.

This second strategy is indeed more robust, particularly when the loading is symmetrical (stresses applied on
both the top and the bottom surfaces of the disk). In particular, it can be shown that clamping the disk between
two cylinders with different radii can, when properly arranged, create a radial displacement field that is null
at the rim of the disk, regardless of the mounting force intensity. This possibility can in fact be foreshadowed
from the Euler-Bernoulli beam theory, which states that, when a beam is loaded (for example bent downwards),
the top-half is stretched while the bottom-half is compressed. Therefore, the plane of symmetry (or a nearby
surface) should not undergo any longitudinal deformation to the first order.

p

Figure 3. The clamping boundary conditions. The blue band is supported from below while a varying pressure is applied
to the top pink band.
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Figure 4. Finite Element numerical results showing the disc-resonator deformed from the co-axial mounting scheme.
Colors represent the magnitude of radial deformation, and a band where this deformation is zero can be seen along the
perimeter of the disc.

The next section is devoted to finite-difference numerical simulations aiming to evaluate the efficiency of this
neutral mounting scheme.

3. NUMERICAL SIMULATIONS

The heuristic analysis presented above provides intuition that a neutral clamping configuration exists for WGM
disk resonators. However, to verify this intuition and furthermore provide the quantitative results that would be
necessary for designing a physical system for experiment, numerical simulations are necessary.

3.1 Modeling Configuration

We performed finite element method (FEM) simulations using COMSOL. Because our co-axially clamped res-
onator can be thought of as a hybrid of the sheared and bent disc situations, we worked with a geometry where
the disc has a central hole. The dimensions of the disc are, inner radius, a = 2 mm, outer radius, b = 5 mm, and
a thickness of 0.5 mm, with the disc symmetry plane aligned on the z axis (-250 pm< z <250 pum). We assigned
material properties to the disc based on those of calcium fluoride, with Young’s modulus £ = 75.8 GPa, Poisson
ratio v = 0.26, and density p = 3180 kg m~3.

The co-axial clamping boundary conditions are applied as follows. A static force of F, is applied upwards to
a 200 pm wide strip around the lower, outer portion of the disc is. A 200 pm wide strip around the top, inner
portion of the disc is held fixed, completing the clamping scheme (see figure 3). The model is then meshed with
70,000 triangular, quadratic Lagrange elements, and varying values of F, are used in finding static solutions to
the geometry deformation, stress, and strain.

3.2 Numerical Results

Results of the FEM simulation confirm the existence of a location at the edge of the disc where radial deformation
is zero for a wide range of mounting-force values. Figure 4 shows the deformed disc and magnitude of radial
displacement. Figure 5 shows radial deformation w,(z) plotted along the edge of the disc for mounting-forces
spanning three orders of magnitude. In all cases, the disc does not deform radially at a position 64.8 pm above
the mid-plane of the disc. The fact that this location does not coincide with the geometric symmetry plane is
a result of the asymmetric boundary conditions, i.e., that the inner mounting surface is fixed (and the material
cannot deform radially), but the outer mounting surface is allowed to deform radially. However, the results are
consistent with the intuition from the Euler-Bernoulli theory, which predicts a neutral plane between regions of
compression and expansion.
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Figure 5. Plot of u,(z) along the disc edge for five different values of mounting pressure. The fact that u,(z) = 0 for

z = 68.4 pm in all cases suggests that the frequency of a WGM propagating in this region would be independent of
mounting pressure.

The fact that the turning point remains the same even when the loading force spans across 3 orders of
magnitude is a reliable indicator of the robustness of this mounting scheme. It indicates that if the WGMs are
travelling at the height of this turning point, they would not undergo any eigenfrequency shift. In particular,
it proves that the system would be very insensitive to low-frequency vibrations (which induce only small load
variations), but also to large accelerations (which may induce significantly large load variations). Asymmetric
WGM resonators as presented in Fig. 6 would therefore enable to improve the frequency stability of the cavity,
particularly as far as vibrations and linear accelerations are concerned.

4. CONCLUSION

In this work, we have investigated a neutral mounting architecture for WGM disk resonators. Numerical sim-
ulations have shown that optimal configurations enable frequency stability for a very wide range of loading
forces.

This theoretical analysis, which will have to be confirmed experimentally, indicates that the reduction of
vibration- and acceleration-induced frequency fluctuations in WGM disk-resonators can be achieved with a sim-
ple mounting strategy. Successful implementation of such device would offer a small and robust frequency
reference for portable and practical devices in a non-laboratory environment.
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Figure 6. Lateral view of an optimally designed WGM resonator. A protuberance in the circumference of the disk is
located at the height of the load-insensitive turning point (z = 68.4 ym in or example of Fig. 5). Such protuberance-like
WGM resonators have already been demonstrated in the literature (see for example refs.®9).
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