Enhancing Contact Graph Routing for Delay Tolerant Space Networking

John Seguí, Esther Jennings, Scot Burleigh

Jet Propulsion Laboratory

California Institute of Technology

Presented at IEEE GLOBECOM Conference Houston, Texas

8 December 2011

- DTN
- CGR
- Observations / Solutions
 - Routing Loop
 - Latency
 - Computational Requirements

- Delay/Disruption Tolerant Networking
 - <u>www.dtnrg.org</u>
 - Operates on ISS payloads
 - Tested on JPL deep space craft
- Interplanetary Overlay Network (ION)
 - NASA implementation of DTN (+ Network software)
- Contact Graph Routing
 - Future contacts for route selection
 - Earliest-Forfeit-Time vs. Earliest-Arrival-Time
 - Tested on JPL deep space craft

Identified cause of routing-loop failure in current DTN Routing Algorithm

Bundle Sent from LRS1->DST

- 1) LRS1 Finds route through DSN-G
- 2) DSN-G finds route with earlier forfeit time through LRS2
- 3) LRS2 finds route with earlier forfeit time through LRS1. GOTO 1...

Note: link names specify contact forfeit time

Identified Solution for DTN Routing-Loop Failure

- Published research [1] identifies monotonicity and isotonicity as sufficient criteria for convergence of path vector protocols such as CGR
 - Isotonicity: relationship between the weights of any two paths with the same origin is preserved when both are extended with the same edge
 - Monotonicity: weight of a path does not decrease for path extension
- Current CGR draft weighs path by earliest-forfeit-time
 - Relationships between paths are preserved when extended with the same edge
 - As the path is extended (contacts added) earliest-forfeit-time may decrease
- Identified non-monotonicity of path extension as cause of observed routing loop during CGR simulations
 - Same situation occurs in certain BGP policies resulting in route oscillation [2]
- Solution: change to earliest-arrival-time path selection
 - Delay is a strictly monotonic cost for path extension
 - Previous slide's loop resolved

[1] Sobrinho, J. L. 2003. Network routing with path vector protocols: theory and applications. In Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols For Computer Communications (Karlsruhe, Germany, August 25 - 29, 2003). SIGCOMM '03. ACM, New York, NY, 49-60.

[2] Kannan Varadhan, Ramesh Godvindan, Deborah Estrin, "Persistent route oscillation in inter-domain routing", Computer Networks 32 (2000) 1–16.

Simulations

- Simulated 4 Solar System Scenarios
 - Lunar, Lunar Polar, Martian Historic, Martian Future

Developed MACHETE A model of earliest-arrival-time Dijkstra CGR

- Earliest-Arrival-Time weight function allows use of Dijkstra traversal algorithm
 - Known upper-bound approx= O(#contacts + #nodes)
 - Significant computational improvement
- Developed MACHETE simulation model of CGR using earliest-arrival-time Dijkstra
 - Compared earliest-forfeit-time and earliest-arrival-time CGR data performance
 - Analyzed latency, buffer and computational performance for representative Martian and Lunar scenarios
 - Useful for investigating more advanced path weighting functions that offer potential for better network performance

Delay for Lunar Scenario

Computational Improvement

 ECGR decreased network load and increased delivery ratio (given finite horizon)

Figure 10 - Delivery Ratio (per flow)

 Enhanced CGR by moving to earliest-arrival-time cost and temporal Dijkstra algorithm

 Simulations showed ECGR improved network load, data latency and delivery ratio

- Code being pushed to ION Open Source
 - <u>http://ion-dtn.sourceforge.net/</u>

