

 1

 Ontological Modeling for Integrated Spacecraft Analysis
Erica Wicks

Mentor: Yu-Wen Tung

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr., Pasadena, CA 91109

 2

Abstract
Current spacecraft work as a cooperative group of a number of subsystems. Each of these requires
modeling software for development, testing, and prediction. It is the goal of my team to create an
overarching software architecture called the Integrated Spacecraft Analysis (ISCA) to aid in deploying the
discrete subsystems’ models. Such a plan has been attempted in the past, and has failed due to the
excessive scope of the project. Our goal in this version of ISCA is to use new resources to reduce the
scope of the project, including using ontological models to help link the internal interfaces of
subsystems’ models with the ISCA architecture.

I have created an ontology of functions specific to the modeling system of the navigation system of a
spacecraft. The resulting ontology not only links, at an architectural level, language specific
instantiations of the modeling system’s code, but also is web-viewable and can act as a documentation
standard.

This ontology is proof of the concept that ontological modeling can aid in the integration necessary for
ISCA to work, and can act as the prototype for future ISCA ontologies.

 3

Table of Contents
Abstract ... 2

Table of Figures ... 4

Introduction .. 5

Introduction to ISCA .. 5

Earlier Versions ... 6

MSAS ... 6

ISCA-1 .. 6

Current ISCA .. 7

Introduction to Ontologies ... 7

History of Ontologies .. 7

Ontology Basics ... 8

Ontology Languages .. 10

Ontologies for Information Science .. 10

Analysis and Design Phase .. 10

Deployment and Run-time Phase ... 12

Early Designs ... 12

Initial Design .. 12

First Draft .. 13

Second Draft ... 13

Problems ... 14

ISCA Proof of Concept ... 15

SPICE ... 15

APGEN ... 15

Integration Plan... 15

Creating the SPICE Function Ontology .. 16

Viewing the SPICE Function Ontology... 18

Using the SPICE Function Ontology .. 20

Results ... 21

Future Plans .. 22

Works Cited ... 23

 4

Table of Figures
Figure 1: An Example of Two Related Concepts in the Example Domain .. 8
Figure 2: A second Example of Two Related Concepts in the Example Domain .. 8
Figure 3: A Class Containing an Element .. 9
Figure 4: A Class Can Act as a Concept within an Ontology ... 9
Figure 5: A Partial View of the First Attempt at Creating a Slewtooth Ontology 13
Figure 6: A Full view of a Basic ISCA Ontology with the ACS Subsystem Specified.................................... 14
Figure 7: SPICE Functions Converted into Excel Spreadsheet.. 16
Figure 8: Initial XML Representation of SPICE Function Information .. 17
Figure 9: HyperGraph Hyperbolic view of the SPICE Function Ontology ... 19
Figure 10: The XML View of the Treebolic Ontology ... 20
Figure 11: Treebolic Ontology with Web Interface, Tooltips Visible ... 20
Figure 12: The Edited Version of the Treebolic Viewer, with Search Function and Tabs 21

 5

Introduction
Current spacecraft work as a cooperative group of a number of subsystems. These subsystems include
but are not limited to Navigation, Attitude Control System, Command and Data Handling, Thermal
Control, and Telecommunications, which work together to form the spacecraft as we know it. Each of
these individual subsystems is a complex structure on its own, however, requiring modeling software for
development, testing, and prediction. It is the goal of my team to create an overarching software
architecture called the Integrated Spacecraft Analysis (ISCA) to aid in deploying the discrete subsystems’
models (1). In order to aid in the development of this software, I have examined the use of ontological
modeling to enhance our software architecture and aid in integration.

In the remaining portions of this paper, we will look at ISCA and its development more thoroughly. First,
we will examine the history of ISCA in the form of earlier versions and designs, current operations
concept, and, most importantly, where the two former differ. Next, we will examine ontologies – their
origin, uses in information science, and eventually the benefit that they can give ISCA. Lastly, we will
examine a proof-of-concept ontological model useful to ISCA, the procedure used to implement it, and
the effectiveness of such a model.

Introduction to ISCA
To understand the need for an Integrated Spacecraft Analysis (ISCA) project, it is first necessary to gain a
basic understanding of the role of modeling in spacecraft operation and prediction. It is beyond the
scope of this paper to fully flesh out the uses and benefits of modeling components of a spacecraft, nor
is it possible in such a brief amount of time to fully explain the complexity of the interactions of the
subsystems nor the design and modeling process. Therefore, the following information on these topics
is exemplary but by no means exhaustive.

Before sending any commands to a spacecraft, all commands must go through a verification and
validation phase where models are used “to predict the effect of proposed plans and sequences on
critical…resources” (1). Modeling allows command designers to make sure that commands will not
endanger the spacecraft in any way. Once a command has been carried out by the spacecraft, modeling
is used to “predict the state of the [spacecraft] in such a way that it can be compared with actual data
obtained from downlinked telemetry” (1). We can see, therefore, that spacecraft modeling software is
intricately worked into the mission operations of a spacecraft.

Despite the fact that modeling spacecraft subsystems is necessary and often used, there are a number
of problems with current modeling system software. As the designer for the initial version of ISCA, Mark
Kordon, reports:

JPL currently uses a variety of homegrown simulation-based spacecraft (S/C) prediction
and health assessment simulation models and tools to assist in operating its space
vehicles. These applications are often developed in an ad-hoc manner (i.e. do not follow
the JPL Software Development Requirements) and are frequently maintained through
the initiative of individual engineers on a project-by-project basis. They are usually

 6

tailored for a specific mission and typically require significant modifications by the
owner (generally due to lack of documentation) for use on other projects. This often
leads to different operations processes using different implementations of the same
simulation models (2).

To try to mitigate the effects of these problems, the ISCA project was designed to “provide a better
methodology for designing and deploying the [Modeling System] that is available today” (1). However,
ISCA itself has gone through a number of design changes since its earliest implementation. In order to
understand how we arrived at the design of ISCA today, it is necessary to understand a little more about
its predecessors.

Earlier Versions
ISCA developed as a part of a larger, multi-mission design system called the Advanced Multimission
Operation System (AMMOS). ISCA is an evolution of the Spacecraft Analysis (SCA) subsystem that was
included in the initial design of AMMOS (3). The most notable instances of an attempt at an integrated
version of the SCA are MSAS, the initial implementation of ISCA, and the version of ISCA that is currently
in development. Descriptions of these various systems follow.

MSAS
Multimission Spacecraft Analysis Subsystem (MSAS) was a proposal in the mid to late 1990s (1) that
operated as part of the Advanced Multimission Operating System (AMMOS). A few of the key ways in
which MSAS attempted integration among models of the spacecraft’s subsystems include:

1. The use of common analysis software reused many times within the system
2. The use of the State Table as a common communication data type…
3. A front panel incorporating the Hewlett Packard Hpvue
4. A common GUI design for all applications
5. A catalogue and catalogue system for storage and retrieval of data
6. A ‘Batch Mode’ or command line execution capability
7. The use of Application Programming Interfaces (API’s) based on abstract data types (4)

This design strategy fed directly into the design for the first implementation of ISCA when the scope of
MSAS was determined too large for time and budget constraints (1).

ISCA-1
In 2006, Mark Kordon and his team started working on a different method for creating interoperability
between models of the various spacecraft subsystems (2). Their proposal was the original Integrated
Spacecraft Analysis (referred to here as ISCA-1). ISCA-1 had the goal of creating a “plug-and-play”
framework that could incorporate different subsystems’ modeling programs, and could exchange these
models for updated ones as needed (5). This integrated framework would have its own Application
Programming Interface (API), which would allow a user to initialize a simulation run through all
connected models, execute a simulation (including single stepping), set and read data, write log and
error files, write checkpoint files, write results files, and end a simulation (6).

 7

Though more limited than its predecessor MSAS in that it did not encompass models for Data
Management and Accountability, Activity Planning and Sequencing, or Data Monitoring and Display (2),
its scope was wide enough to lead ISCA-1 to fail to deliver on its promises within the allotted budget (1).
The reviewers of the operations concept claimed that the scope of ISCA-1 was “beyond what has been
attempted by the team, or anyone else at JPL before” (1). With limited money and time, the ISCA-1 task
force was attempting a project that the reviewers found beyond the scope of abilities at JPL with
funding less than was given to the MSAS team.

Coupled with additional problems that the review team found with the clarity and maturity of the design
of ISCA-1 as well as the responsiveness of the requirements, the excessive scope eventually led to the
discontinuation of ISCA-1.

Current ISCA
The failures of both MSAS and ISCA-1 did not mean that the goal of integration among the models of the
spacecraft’s subsystems was not worth working toward, merely that the angle of approach of the earlier
versions was flawed. Because the plan for the current instantiation of ISCA is broad and interacts with
most of the subsystems of the spacecraft, the plan for its architecture is likewise broad. Because the
current ISCA is still in the design phase and currently developing its operations concept, it is my
intention here to introduce just the very basic idea of the current ISCA, as well as the ways in which it
differs from the previous attempts.

The current implementation plan for ISCA aims “to provide a system-wide, integrated interface to the
modeling capabilities needed in Mission Operations” (3). The ISCA team would accomplish this by
creating and adopting a Uniform Modeling Interface (UMI) that would allow users to have access to all
subsystem models and enable communication between these models. While at initial glance this seems
fairly similar to the design of ISCA-1, this new implementation plan takes into account the full
complexity of the Mission Operation System and reduces the scope of the project substantially. One of
the ways in which the scope of the project would be reduced is by incorporating some mission specific
models into our architecture by linking the internal interfaces with the ISCA architecture. Such linking
can be implemented by the use of ontological modeling.

Introduction to Ontologies
To understand how an ontology might be useful in the design of ISCA, and the process by which one
would be built, it is necessary first to understand where ontologies came from, how they are created,
and most importantly how they can be used within the realms of information and computer science.

History of Ontologies
Ontologies in information science are an evolution of a branch of Metaphysics known as Ontology. The
name “Ontology” stems from the Ancient Greek words ὀντος (ontos), which is the present participle of
the verb “to be”, meaning “being” or “that which exists”, and λογἰα (logia), meaning (more-or-less)
“study” (7). This philosophical-Ontology is literally the study of existence and reality and defining what
each of those means, and perhaps most importantly, for our purposes, the study of the fundamental

 8

Is
A Buick A Car

divisions of things in the world (7). The concepts of fundamental divisions and defining the domain of
existence are what are pulled into the information science version of an ontology1.

In the middle of the twentieth century, as the study of Artificial Intelligence was coming into its own,
researchers began to understand the need for defining a system of knowledge (7). If an Artificially
Intelligent system needs as input a knowledge base from which to extrapolate (based on input-rules)
additional information or courses of action, then there must needs be a way to define such a knowledge
base. The more rigorously one is able to define a knowledge base, the more robust and powerful the
A.I. system that can come from it (8).

In 1993, T. Gruber released a paper that is widely credited with offering the first formal definition of an
ontology from the computer science perspective (7). Initially, Gruber describes a formally defined
knowledge base as a conceptualization. He claims that “[e]very knowledge base, knowledge-based
system, or knowledge-level agent is committed to some conceptualization, explicitly or implicitly” (8).
Based on this definition and use of conceptualizations, Gruber defines an ontology as “an explicit
specification of a conceptualization” (8).

Ontology Basics
Simplified from Gruber’s formal definition, an ontology is, basically, a set of concepts and a set of
relations on those concepts that together define a domain (or knowledge base). For instance, you could
define your (very tiny) domain as containing the concepts “Erica”, “A car”, and “A Buick”, and the
relations “Is” and “Drives”. More complicated rules defining the domain can be built up using these
concepts and relations. For instance, we can link “A Buick” and “A car” together with the relationship
“Is” to define “A Buick Is A Car”.

Alternatively, we can link together “Erica” and “A Buick” together with “Drives” to form “Erica Drives A
Buick”.

1 There is a natural language problem here when referring to the abstract, non-count noun “Ontology” when it
refers to the philosophical study of existence as opposed to the counted, concrete noun “an ontology” when
referring to a described knowledge base in the realm of computer science. The count noun “an ontology” is newer
and not universally recognized, though it will continue to be used within this paper.

Drives
A Buick Erica

Figure 1: An Example of Two Related Concepts in the Example Domain

Figure 2: A second Example of Two Related Concepts in the Example Domain

 9

It can be helpful to think of the concepts and their relations as, respectively, the nouns and verbs of a
sentence. In these two instances we have created the sentences “A Buick is a car” and “Erica drives a
Buick”.

Of course, not all ontologies are as simplistic as the preceding demonstration. Most have sets of
relations and concepts that are much larger than the one described, depending on the complexity of the
domain needing to be described. The same basic premises apply, however, regardless of the size of the
concept and relation sets. In most ontologies, though, the sets of concepts are further divided into a
number of classes. These classes contain concepts that have a certain degree of similarity, and can
themselves contain further sub-classes. Classes also can act as elements within the ontology, and are
able to relate to other concepts via a relation. For example, in the above domain we specified the
concepts “A Buick” and “A Car”. Though it might be evident that, in the real world, a Buick is a type of
Car, such a relationship has not been formally specified. We can to represent this within the domain by
declaring that “A Car” is a class that contains the element “A Buick”.

Implicit in the use of classes within a set of concepts is the relation “Is a” or “Are”. In Figure 3, we have
visually denoted that “A Buick” is an element of the class “A Car”, but this can just as easily be said as “A
Buick Is A Car”. In essence, we can replace the statement X ∈ Y with X is a Y, using either membership in
a class or a formally specified ontology relationship “Is a” as a definition.

It is important to remember that these classes containing concepts can themselves act as concepts,
meaning that they can be linked to other concepts via relations. Therefore, while “A Car” is a class, it
can still act as a concept in something like “Erica Drives A Car”. This also means that classes containing
concepts can aact as members themselves of other classes.

Of course, there are other levels of complexity that can be included in an ontology. Concepts can have
attributes helping to define the concept, and classes within classes can create varying levels of
hierarchies within the domain. The set of relations can also come with rules and restrictions limiting

A Car

A Buick

Figure 3: A Class Containing an Element

Drives
Erica

Figure 4: A Class Can Act as a Concept within an Ontology
A Car

 10

how they can interact with concepts, and the entire domain can come with axioms defining the system.
However, the basic idea of a set of concepts and a set of relations defining how they interact can be
viewed as a simple outline of an ontology.

Ontology Languages
There are, of course, many different languages with which to write an ontology. Which one is chosen
ultimately depends on how the ontology is intended to be used (on the web, in conjunction with existing
programming, whether you have a great deal of axioms, etc…)

One of the more popular web-based ontology languages is the Web Ontology Language (OWL2). OWL is
“a computational logic-based language such that knowledge expressed in OWL can be reasoned with by
computer programs either to verify the consistency of that knowledge or to make implicit knowledge
explicit” (9). Unpacking this a little, OWL is designed to represent an ontology in a logical (that is,
mathematically logical) way that enables artificially intelligent agents and programs to both access the
ontology and draw conclusions from it. OWL is also a notoriously web-based ontology language that
relies upon (but is not limited to) XML (eXtensible Markup Language (10)), RDF (Resource Description
Framework (11)), and RDFS (Resource Description Framework Schema (12)) structures for its syntax.
OWL’s use of web-languages allows it to “represent machine interpretable content on the web” (13).

One of the most interesting ways in which OWL implements this web-based interoperability is by
associating every concept with an International Resource Identifier (IRI), which are generalizations of
Uniform Resource Identifiers (URIs) that may contain any Unicode character (14). By associating
concepts with IRIs, OWL provides each concept with a unique identifier that can be used or mapped to
by many different documents or agents, ensuring a similar definition of each concept among users and
collaborators.

Ontologies for Information Science
It turns out that there are myriad uses for ontologies within the realm of information and computer
science beyond aiding in defining Artificial Intelligence knowledge bases. Without going into detail on
them all, I would like to talk about the uses that have the most impact and import on the task of creating
an ontology for ISCA, specifically the use of ontologies during the Analysis and Design and the
Deployment and Run Time phases.

Analysis and Design Phase
In looking at the uses of ontological modeling during the Analysis and Design phase, we will examine
specifically the uses in requirements engineering, component re-use, and documentation.

Requirements Engineering
One of the big constraints on working on ISCA is the need to incorporate models from most (if not all) of
a spacecraft’s subsystems. Requiring the design team to become experts within the domain of each
subsystem is infeasible. Likewise, being able to accurately model domains that require experts is itself

2 The creators of OWL thought that the acronym “WOL”, though technically correct in representing “Web Ontology
Language”, was more difficult to remember than “OWL”, and so chose the latter as their acronym.

 11

an undertaking. This is not a problem inherent only to the creation of ISCA, but rather a recurring theme
in requirements engineering. Traditionally, requirements information is gathered and used in natural
language, which leaves us with the problem that natural language is replete with inconsistencies and
ambiguities3 (15). To ensure that we can accurately incorporate all models, a shared formal (i.e. non-
natural language) understanding of the domain must be in place.

To this end, we can use an ontology that “describe[s] requirements specification documents…and
formally represent[s] requirements knowledge” (16). This allows us to model domains that require
expert knowledge without requiring the designers to become experts themselves, and offers the
assurance of accuracy not necessarily provided in natural language.

Component Re-use
An interesting characteristic of ISCA is that there have been multiple past attempts at its creation. For
us, this means that, while the goals and specifications have changed since past attempts, there exist
already the beginnings of a coded implementation. By creating an ontological model that formally
describes the function of components at the design phase of this ISCA, we can see (both structurally and
visually) instances where older implementations can be re-used. Also notable, we can likewise see
instances where any new code we write can be re-used. Component re-use, whether between project
implementations or within one, is generally desired since it helps “avoid rework, save money and
improve the overall system quality” (16).

Documentation
Additionally, creating an ontology during the design phase of ISCA can lead toward better
documentation of the program itself. The initial ISCA Operations Concept claims that most spacecraft
modeling software “are usually tailored for a specific mission and typically require significant
modifications by the owner…for use on other projects” (2) due to lack of documentation. Maintenance
on existing software systems is necessary and is in fact “one of the most dominant activities in Software
Engineering” (16). If we model the ISCA architecture using an ontology to formally explicate the
relations between subsystems and code, we will have additionally created a documented model of the
functionality of our code – one that is easy to evolve for future modifications and uses. Furthermore,
the resulting documentation will be programming language independent and readable even by those
who know no programming languages.

Such ontological documentation can also lead to benefits in bug-finding, updating, and testing software
code. An ontology modeling the way in which the code interacts can lead to better predictions about
the location of a bug having an effect on a certain aspect of the program. The same holds true for fixing
the bug or updating the code; the ontology allows the programmer to see what other aspects of the
code are affected by a certain module. An ontological model can also help in testing the code by
generating “basic test cases since they encode domain knowledge in a machine process-able format”
(16).

3 Often in field of linguistics, this same concept is referred to as “the richness” of language. Unfortunately, in the
realm of requirements engineering such richness can be tolerated only at the cost of accuracy.

 12

Deployment and Run-time Phase
Though most benefits from ontological modeling occur during the analysis and design phase, there are
also possible benefits during deployment of the software. This is especially pertinent if one is able to
view ISCA as a form of middleware between the user and the various models of the subsystems of the
spacecraft. Such “middleware” can become complex when trying to manage different component
dependencies (17). An ontology modeling this middleware, powered by formal logic, creates a
conceptual model that “may be queried, may foresight required actions…or may be check to avoid
inconsistent system configurations” (18) that can be used to mitigate this complexity. Additionally, we
can foresee a time when the pre-existing models of various subsystems will change or update. We can
ontologically model these updates, and then map the resulting ontology to the old one or into the ISCA
ontology itself, limiting the amount of work necessary to incorporate model updates.

Early Designs
The initial idea for using ontological modeling in ISCA was to create a model of an abstract, overarching
structure of the various subsystems of a spacecraft and individual domain ontologies of the various
subsystems. This would create a shared vocabulary between the subsystems and within the program
architecture, allowing information to be shared more easily. Such an ontology would make use of the
aforementioned benefits of ontological modeling in the following ways. During the requirements
engineering phase, ontological modeling allows us to represent information given to us by domain
experts in a rigorous, formal way. During the design of the software, ontological models of the domains
allow us to see areas where we can reuse code from prior versions of ISCA or code that we have already
written ourselves. During the run-time of our software, we could rely on mappings within the ontology
to associate various aspects of the subsystems’ models, and eventually use these mappings to
incorporate new models. The resulting code would then come with its own ontological documentation,
allowing our successors to update or fix the code with ease.

Initial Design
Whereas in previous versions of the ISCA attempts were made to create a “plug-and-play” architecture,
fitting different models directly into the ISCA code, our initial design of the ontology would allow us
instead to map into ISCA, limiting the amount of necessary code refactoring. This allows for a greater
freedom of design in the individual subsystems’ models, which is necessary especially as some of the
models have already been created and defined.

To demonstrate this capability, we initially decided to model the domain of the Attitude Control System
(ACS), a particular subsystem of the spacecraft in charge of keeping and changing the spacecraft’s
attitude. Currently, ACS is using a modeling system called Slewth, or Slewtooth. Slewtooth was designed
to model and predict the attitude behavior of NASA’s Dawn spacecraft4 and monitor for constraint
violations (19). Because Slewtooth is, at this point, specific to the spacecraft Dawn, the programmers

4 Dawn is a deep space mapping mission heading to two asteroids, Vesta and Ceres, in the asteroid belt between
Mars and Jupiter. It was launched in September of 2007 and will reach its first target, Vesta, before this paper is
finished.

 13

were able to include the actual flight software for that spacecraft. This allows them to reference the
actual power steering code used by the Dawn spacecraft for more accurate predictions.

By starting with an ontological model of Slewtooth and the ACS modeling software, we can start to see
where individual subsystems’ models are dependent on information from other subsystems (like flight
software or Navigation output). By creating a set of generalized abstract relations, we can allow for
different serializations at these focal points, allowing for greater use of ISCA.

First Draft
My first attempt at modeling Slewtooth was an ontological model of every module, input, output, or
mode contained within Slewtooth. Such a model resulted in 25 concept nodes, 4 relations, and 30
propositions (that is “concept-relation-concept” groups) without including Slewtooth’s access to the
flight software. See Figure 5: A Partial View of the First Attempt at Creating a Slewtooth Ontology to
view what such an ontology looked like.

Figure 5: A Partial View of the First Attempt at Creating a Slewtooth Ontology

Such a description of Slewtooth could aid the ISCA team’s understanding of Slewtooth itself and could
aid in representing Slewtooth within the confines of ISCA. However, while this generalized model of
what Slewtooth represents could be applied to more spacecraft than just Dawn, in order to make ISCA
sustainable over multiple missions we have to allow for changes within the internal structure of
Slewtooth or the abandonment of Slewtooth as a modeler all together. To this end, an ISCA ontology
must have a way to mandate necessary inputs into any ACS modeler, any necessary outputs from an ACS
modeler, and any points within an ACS modeler where access to information from another subsystem is
necessary that is not specific to Sleewtooth.

Second Draft
This led to a second draft of an ontological modeling of Slewtooth or ACS software, which was less
complex, though potentially more informative to the ISCA objective. The second draft incorporates the
idea of a “black-box” model of Slewtooth, mandating only the inputs, outputs, and connections with

 14

other modeling systems so that Slewtooth itself could be removed or its inner-workings changed
without necessarily affecting the model. This new, simpler ontology resulted in 11 concept nodes, 5
relations, and 9 propositions for the Slewtooth portion alone. See Figure 6: A Full view of a Basic ISCA
Ontology with the ACS Subsystem Specified to see what this new ontological model looked like.

Figure 6: A Full view of a Basic ISCA Ontology with the ACS Subsystem Specified

The new ontology showed only those points where the ACS modeling system might interact with other
models or subsystems, including the flight software. In this sense, we are no longer looking at an
ontological model of JUST the Slewtooth or ACS domain, but rather a portion of the domain of ISCA
itself. A simpler model like this allows us to see the mapping points between ontologies of different
subsystems, which will turn, in the future, to the mapping points between the modeling systems of
different subsystems.

Problems
Both ontological models of Slewtooth looked promising, and potentially helpful in the overall product of
ISCA, but there were some inherent problems with the overall concept of these designs. These draft
ontologies were both trying to model the interaction of Slewtooth with the overall spacecraft and the
ISCA design, but because there is limited time to the internship and thus our work on this project, we
were unable to gain access to the code of Slewtooth to see exactly how it interacted with other
applications. Additionally, the new version of ISCA is still in the early stages of design, currently refining
its operations concept. Because the actual architectural design of the ISCA UMI is still variable,
ontologically modeling the design or ontologically linking to the design seemed dangerous. In order to
still demonstrate the usefulness of an ontology within the domain of ISCA, we were forced to focus
down the ontology in two ways. The first focus lowered the domain from ontologically modeling the

 15

interaction of an entire subsystem with the ISCA UMI to modeling one aspect of a particular modeling
program. The second focus changed the use of the ontology; instead of a high-level, abstract backbone
to the entire ISCA system, the new ontology design would allow for web-enhanced, user-level
integration. The resulting ontology would stand as a proof of concept of the ideas of integration
between subsystems, as well as a proof of the concept of the usefulness of ontologies in software
design. These two new foci, along with the new design of the ontology, will be explained in depth
below.

ISCA Proof of Concept
The newly refocused version of the ISCA ontology aimed at making the functions of a program called
SPICE more accessible to other modeling programs, in particular a program called APGEN. This
approach was decided upon after observing users of SPICE and the methods by which they accessed
SPICE. To better understand our goals with this ontology, a basic understanding of both SPICE and
APGEN is necessary.

SPICE
SPICE is an information system built by the Navigation and Ancillary Information Facility to assist “in
planning and interpreting scientific observations from space-borne instruments” (20). A difficult
acronym to unpack, SPICE more or less stands for Spacecraft ephemeris; Planet, satellite, comet, or
asteroid ephemerides; Instrument description; C-matrix; and Events – though in truth more navigation
information than that can be contained within SPICE files. Information held in these SPICE files is used
to model the location of the spacecraft in space or the locations of objects in space from the point of
view of the spacecraft. SPICE is a standard that is available to the public and used by many different
groups and applications.

APGEN
APGEN – or Applications Generator – is a “planning tool component of the Mission Planning &
Sequencing Program Element” (20). It allows for visualization of mission scenarios, recognition of
constraint violations, support in sequence building and resource and constraint analysis. Users can
specify resources – power, fuel, etc. – and events that use those resources, and then plan with respect
to time the order that those events occur. By providing APGEN with restraints on resources, APGEN can
provide information on when the user’s plan violates a resource constraint, as well as report on how
long a given plan will take to operate. As an initial input, APGEN can take navigation and location
information in the form of SPICE files, and can even call SPICE functions. In talking with proficient
APGEN users (21), it became clear that in order to use SPICE functions, individual function wrappers that
allowed the functions to be called from APGEN had to be created in user-defined files for even limited
functionality.

Integration Plan
We decided to create an ontological model of the SPICE functions based on C-SPICE, or the C version of
the SPICE functions, which is the most often used format. However, within the ontology each function

 16

would be linked to its Fortran, Matlab, and IDL function counterpart. In this sense, the SPICE ontology
would be populated with the abstract SPICE functions, and each of these nodes would be associated
with up to four different instantiations of the functions in the different programming languages. This
allows users of SPICE to access the same ontology for documentation of the SPICE functions in any
language.

However, this does not solve the problem of needing to wrap the functions in order to use them from
APGEN. To address this problem, the goal was to associate wrappers with each function node in the
ontology. Eventually this proved to be unfeasible given the limited time, so instead pseudocode was
attached to each function that, when implemented, would convert data types and functions into calls to
an xmlrpc server version of the SPICE functions. This would allow users to call SPICE functions more
easily from other applications.

Creating the SPICE Function Ontology
To create the ontology of the SPICE Functions, I took the information compiled in the CSPICE API
Function Guide (22) and converted it into a comma-separated file. I then manually unembedded the
URLs, added the keywords and the inputs, outputs, and parameters associated with each Function, and
saved the resulting file as an Excel spreadsheet. I treated this file as my base; because most current
users of SPICE use the C-SPICE version, it seemed that the SPICE ontology itself would be most usable if
based on the C-SPICE version. To this, I added the function procedures for the corresponding version of
each function in C, Fortran, Matlab, and IDL.

Figure 7: SPICE Functions Converted into Excel Spreadsheet

The resulting data needed some preprocessing before it could be converted to a usable ontology format.
Some keywords associated with the functions were present in both plural and singular forms (i.e.,
“Ellipse” and “Ellipses”). The decision was made to go with the singular form except in those cases
where a plural keyword matched up with a section of the C-SPICE required reading documents (23).
Those keywords could still be easily linked with the corresponding required reading documents, but now
functions with a keyword “Ellipse” would be grouped with those associated a keyword “Ellipses”.

 17

Additionally, there was not always a direct isomorphism between functions in one language with those
in another. For instance, the decision was made to base the ontology on the C-SPICE functions, as C-
SPICE is the most often used form of SPICE currently, though originally SPICE was designed for Fortran.
There are 1008 Fortran SPICE functions, but only 507 C-SPICE functions. On top of that, there are 37 C-
SPICE functions that do not correspond to any Fortran function. The Matlab version of SPICE (called
MICE) has only 179 functions; however, 12 of these correspond to no C-SPICE function5. Only in Icy, the
IDL version of SPICE, does every function correspond with a C-SPICE function (though, because there are
only 370 function in Icy, the converse is not true). Correctly associating the different versions of each
function nrequired manually matching and checking each function.

After preprocessing the data, I then used <oXygen> XML (24) editor to automatically translate the
spreadsheet into an XML document containing each functions name, description, URL, keywords,
number of inputs, number of outputs, and number of parameters, input and output data types, and the
C, Fortran, Matlab, and IDL procedures.

Figure 8: Initial XML Representation of SPICE Function Information

To create a viable OWL/RDF version of the C-SPICE ontology, I wrote an XSL stylesheet to convert the
XML version of the SPICE Functions into OWL/RDF. This stylesheet needed to convert each Function into
an OWL class, create OWL classes out of each Keyword and output data types, and associate each
Function/OWL class with the correct keyword and output data type parent classes. This resulted in 62
Keyword-based classes, an additional class for those functions without keywords, 7 output data type
classes, 507 leaf function nodes, and an additional 9 Data Type leaf nodes.

While manipulating the XML version of the ontology, we also added in additional information to make
the ontology more robust and more usable. We included nodes that defined the SPICE data types
SpiceInt, SpiceBoolean, SpiceChar, SpiceChar *, Array, Enum, and SpiceCell, and, most importantly,
offered users pseudocode for converting these SPICE data types, using either c++ or Java, into XMLRPC

5 Generally, these MICE functions that do not correspond to a C-SPICE function are special Matlab duplicates of C-
SPICE functions that already exist in the MICE library.

 18

calls. I also added label and content information, as well as links to parent nodes (where applicable),
leading to required reading documents.

Viewing the SPICE Function Ontology
A side effect of this enforced hierarchy based on Keywords and Output data type associated with each
SPICE function is that often nodes belonged to multiple parent classes. In fact, it is rare that a function-
node is not associated with multiple parents, the average being about 2.5 parents to each child. This
means that each of the 507 children will have Multiple connections leading away from it. While this is
not necessarily a problem for an ontology, it gives the resulting model a less-taxonomic appearance that
is neither immediately appealing nor parsable to the human mind.

Because of the issue of multiple parent classes for each function-node, I determined that the best option
for viewing the ontology would be to use a hyperbolic viewer. A hyperbolic viewer displays tree-
structured hierarchies on a non-Euclidean, Poincarean plane that can re-center on any selected node
(25). Such a viewer would allow us to show the vast amount of leaf function nodes from the ontology,
as well as the interconnectedness between parent classes and each child function, with limited
confusion. Initial concepts for this design were influenced by the display used by MultiTree: A Digital
Library of Language Relationship (26), which uses a hyperbolic viewer to display large amounts of
genetic language relationship data.

Initially, I chose a hyperbolic viewer called Hypergraph (27) to model the ontology because of its ease in
producing Java applets and its open source nature. Hypergraph cannot read OWL/RDF, however, nor
will it read straight XML; instead, it relies on XML that is compliant with the GraphXML format.
GraphXML is an interchange format designed to support pure, mathematical graph descriptions as well
as the needs of informational visualization applications (28). To create a GraphXML format of the spice
function ontology, I used a second stylesheet, this time designed to convert from the OWL/RDF version
of the ontology into GraphXML.

However, despite the use of a hyperbolic viewer, the resulting ontology view was still chaotic and lacked
any clarity necessary to be used for documentation and learning purposes. Most of this chaos was due
to the large number of leaf nodes and having multiple parents for each child, creating a complex, large,
web-structure.

 19

Figure 9: HyperGraph Hyperbolic view of the SPICE Function Ontology

Because of the lack of clarity and therefore lack of usefulness, my co-intern and I decided to find an
alternative hyperbolic viewer. We decided on using Treebolic, a similar open source hyperbolic viewer
that allowed for more editing of visualization code and that used a different, clearer visual style (29). In
addition to changing hyperbolic viewers, we decided to clone leaf function nodes. In the earlier,
Hypergraph version of the ontology, each function was linked to multiple parent classes (keywords,
input number, etc.). In the Treebolic version, each parent was allowed to create its own version of the
function children in order to limit the number of edges and aid in clarity. This meant that the original
507 functions now produced 1367 leaf nodes.

However, Treebolic does not read OWL/RDF ontologies, XML, or even GraphXML versions. I once again
wrote a stylesheet to create the “Treebolic” version of the ontology, complete with cloned nodes. Each
node comes equipped with tool tips outlining the function procedure and detailed inputs, outputs, and
parameters, as well as a link that opens up the online documentation page associated with each
function.

 20

Figure 10: The XML View of the Treebolic Ontology

Figure 11: Treebolic Ontology with Web Interface, Tooltips Visible

Using the SPICE Function Ontology
The Treebolic visualization of the ontology allowed us to display every SPICE function, as well as
additional documentation associated with each node. However, the functionality was still limited using
an unedited version of Treebolic. My co-intern edited the Treebolic code to include tabbed
documentation viewing, the option to output the procedure of a selected function, the ability to choose
the output language, and robust search functionality. The ontology searches through the description
and label for each function, and returns all the functions that contain the search query. Clicking on any

 21

returned function will automatically center the hyperbolic viewer on that particular node, allowing for
immediate visualization of the search query as well as easy access to the documentation and usability
encoded into each node.

As a result of this added functionality to the interface, users can now use the SPICE function ontology to
search for relevant or useful functions, output the necessary function calls in any available language,
quickly generate code to convert data types, or simply as a way of viewing and learning the SPICE
functions.

Figure 12: The Edited Version of the Treebolic Viewer, with Search Function and Tabs

Results
The proof-of-concept ontology that we were able to produce contained the entire library of C-SPICE
functions, associated with their Fortran, Matlab, and IDL counterparts, as well as the pseudocode that
would make them more usable from other applications, such as APGEN. Because the SPICE functions
are not necessarily hierarchical, a hierarchy was forced on them that separated the functions by
keywords associated with each function in the documentation as well as output type. This means that
functions associated with multiple keywords or output types were repeated, to keep visualization clear
and simple. The original 507 C-SPICE functions became a set of 1367 function nodes, with 63 parent
keyword classes and 7 parent output-type classes. Each function node contained information about the
function as well as a link to the corresponding documentation webpages. An interface was developed
that allowed the ontology to be viewed in a hyperbolic tree viewer (see Figure 11: Treebolic Ontology

 22

with Web Interface, Tooltips Visible in the Methods section to view what this looks like). The interface
also included a robust search functionality, in-window viewing of documentation pages, as well as
automatic output of the selected function in the programming language of the user’s choice (including
pseudocode.)

The resulting ontology also demonstrates many of the aforementioned uses for ontological modeling in
information science. The SPICE function ontology acts as a way of modeling the SPICE knowledge
domain in a way that is easy to use, even by those users who are not experts in SPICE. Users can easily
search the entire ontology for words of phrases that appear anywhere within the documentation pages
for each function, all from a single webpage. By associating information on input and output data types
with each function, the ontology can provide the correct pseudocode for translating each data type. In
this way, the pseudocode is only input once into the ontology but is reused repeatedly for each function
where it is applicable. The ontology also acts as a new standard of documentation for the SPICE
functions; instead of separate html files for each function as it appears in each different programming
language, all of the information is held in one place.

Future Plans
While we believe that the SPICE ontology and interface acts as a decent proof-of-concept of the
usefulness of ontologies in integration of spacecraft models, we have also noted some specific places
where the design may be improved upon, many of which are usability areas that we had intended to
implement. The first of these is the inclusion of actual wrappers for the SPICE functions. It would be
ideal if users were able to use our ontology to find a SPICE function and output said function completely
wrapped for the program that they were using, and, while this had been our intention, such usability
remains undelivered. Instead, pseudocode is provided for only the C version of the SPICE functions that
would allow users to, if not immediately than at least with less effort, create the version of the functions
that they need. However, adding actual function wrappers as an output from the ontology, for all four
variations of the SPICE functions, would add an incredible amount of usability to the ontology and
further aid in integration measures.

Another area of improvement is in the very documentation of the ontology itself. While the SPICE
ontology may be viewed as a form of documentation for SPICE functions – storing information on
function descriptions and components, as well as associating versions of the same function across
programming languages – there is little documentation on how to use the ontology and its interface. If
the SPICE function ontology were more than a proof-of-concept, if it were being used as actual
documentation for SPICE or available to the public, such documentation would need to exist.

Additionally, after speaking with the group currently in charge of SPICE, it was proposed that an
ontology of SPICE concepts would also by useful. The SPICE concept ontology would document the
nouns used in SPICE – everything from ideas like “ephemeris” to examples of ephemerides. This
ontology could be linked at the root to the SPICE function ontology and extend the amount of the
knowledge domain of SPICE that the ontology is able to cover, which would in turn allow for more
robust documentation and better and more thorough usability. The initial problem with the creation of

 23

this new ontology is the data source for SPICE concepts. Whereas with the SPICE function ontology the
initial list of functions was already created, no such list of SPICE concepts currently exists. However, if
SPICE concepts could be compiled, then created an ontology model of them and linking the new
ontology with the already existing one would prove not only relatively simple, with the creation and
viewing methods already in place, but also markedly helpful.

However, despite the noted areas of improvement, the SPICE function ontology is a working example of
the benefits of using ontological modeling for integration. The ontology demonstrated areas of code re-
use, helped define a knowledge base without expert level knowledge, and resulted in rigorous
documentation of SPICE. I believe that a similar use of ontologies can aid in the implementation of the
new version of ISCA.

Acknowledgement
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and
was sponsored by the Space Grant Program and the National Aeronautics and Space Administration.

Works Cited
1. Maldague, Pierre F. and Tung, Yu-Wen. Integrated Spacecraft Analysis Operations Concept. 2011.

2. Kordon, Mark. Integrated Spacecraft Analysis Operations Concept. 2007.

3. Maldague, Pierre and Tung, Yu-Wen. Integrated Spacecraft Analysis Operations Concept Version 0.5.
2011.

4. Hill, Michael H. Spacecraft Analysis, MSAS -- A Multi-Mission Solution.

5. Kordon, Mark A. Integrated Spacecraft Analysis High Level Architectures. 2007.

6. Kordon, Mark. Integrated Spacecraft Analysis Application Program Interface (API) Software Interface
Specification. 2007.

7. Gruber, Tom. Ontology Definition. tomgruber.org. [Online] 2007. [Cited: June 22, 2011.]
http://tomgruber.org/writing/ontology-definition-2007.htm.

8. —. Toward Priciples for the Design of Ontologies Used for Knowledge Sharing. tomgruber.org.
[Online] August 23, 1993. [Cited: June 22, 2011.] http://tomgruber.org/writing/onto-design.pdf.

9. Hitzler, Pascal, et al., et al. OWL 2 Web Ontology Language Primer. W3C. [Online] October 27, 2009.
[Cited: June 27, 2011.] http://www.w3.org/TR/2009/REC-owl2-primer-20091027/.

10. Extensible Markup Language (XML). W3C. [Online] April 23, 2011. [Cited: June 27, 2011.]
http://www.w3.org/XML/.

 24

11. Klyne, Graham and Carroll, Jeremy J. Resource Description Framework (RDF): Concepts and Abstract
Syntax. W3C. [Online] November 8, 2002. [Cited: June 27, 2011.] http://www.w3.org/TR/2002/WD-rdf-
concepts-20021108/.

12. Brickley, dan and Guha, R.V. RDF Vocabulary Description Language 1.0: RDF Schema. W3C. [Online]
November 12, 2002. [Cited: June 27, 2011.] http://www.w3.org/TR/2002/WD-rdf-schema-20021112/.

13. McGuinness, Deborah L. and van Harmelen, Frank. OWL Web Ontology Language Overview. W3C.
[Online] February 10, 2004. [Cited: June 27, 2011.] http://www.w3.org/TR/2004/REC-owl-features-
20040210/.

14. Duerst, M. Internationalized Resource Identifiers (IRIs). W3C. [Online] May 31, 2005. [Cited: June 27,
2011.] http://www.w3.org/International/iri-edit/draft-duerst-iri.html.

15. The Use of Ontologies as a Backbone for Use Case Management. Deridder, Dirk, Wouters, Bart and
Van Paesschen, Ellen.

16. Applications of Ontologies in Software Engineering. Happel, Hans-Jorg and Seedorf, Stefan.

17. Developing and Managing Software Components in an Ontology-based Application Server. Oberle,
Daniel, et al., et al. Karlsruhe, Germany : s.n.

18. Semantic Management of Middleware. Oberle, Daniel. Karlsruhe, Germany : s.n.

19. Vanelli, C. Anthony, Swenka, Edward and Smith, Brett. Verification of Pointing Constraints for the
Dawn Spacecraft. Honolulu, Hawaii : s.n., 2008.

20. NAIF. [Online] 02 09, 2009. [Cited: 15 07, 2011.] http://naif.jpl.nasa.gov/naif/spiceconcept.html.

21. Wissler, Steven. EPOXI Spacecraft Team Chief. Pasadena, July 12, 2011.

22. CSPICE API Reference Guide. NAIF. [Online] June 9, 2010. [Cited: July 12, 2011.]
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/index.html.

23. SPICE Required Reading Documents. NAIF. [Online] [Cited: July 25, 2011.]
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/.

24. <oXygen/> XML Editor. [Online] Syncro Soft. [Cited: June 17, 2011.] www.oxygenxml.com.

25. Hyperbolic Trees. InfoVis Cyberinfrastructure. [Online] May 13, 2004. [Cited: July 25, 2011.]
http://iv.slis.indiana.edu/sw/hyptree.html.

26. List, LINGUIST. MultiTree. [Online] [Cited: July 15, 2011.] multitree.org.

27. Hypergraph. [Online] 2003. [Cited: July 16, 2011.] http://hypergraph.sourceforge.net/index.html.

 25

28. GraphXML -- An XML-based graph description format. Herman, I. and Marshall, M.S. Amsterdam :
s.n.

29. Bou, Bernard. Treebolic2. sourceforge.net. [Online] [Cited: July 21, 2011.]
http://treebolic.sourceforge.net/en/index.html.

30. Protégé . Welcome to Protégé . Protégé . [Online] 2011. [Cited: June 27, 2011.]
protege.stanford.edu.

31. Knublauch, Holger. An AI Tool for the Real World. JavaWorld. [Online] June 20, 2003. [Cited: June
27, 2011.] http://www.javaworld.com/javaworld/jw-06-2003/jw-0620-protege.html.

32. Florida Institute for Human and Machine Cognition. COE. Cmap tools COE. [Online] [Cited: June 27,
2011.]http://www.ihmc.us/sandbox/groups/coe/wiki/welcome/attachments/d2a1b/COEmanual06.pdf?
sessionID=af02061dea8c960803bd175ae2e54d5ea2b1ec42.

33. Hayes, Pat, et al., et al. COE: Tools for Collaborative Ontology Development and Reuse. COE.
[Online] [Cited: June 27, 2011.]
http://www.ihmc.us/sandbox/groups/coe/wiki/f8c65/attachments/59fa9/HayesCOE.pdf?sessionID=af0
2061dea8c960803bd175ae2e54d5ea2b1ec42.

