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Abstract 
Current spacecraft work as a cooperative group of a number of subsystems.  Each of these requires 
modeling software for development, testing, and prediction.  It is the goal of my team to create an 
overarching software architecture called the Integrated Spacecraft Analysis (ISCA) to aid in deploying the 
discrete subsystems’ models.  Such a plan has been attempted in the past, and has failed due to the 
excessive scope of the project.  Our goal in this version of ISCA is to use new resources to reduce the 
scope of the project, including using ontological models to help link the internal interfaces of 
subsystems’ models with the ISCA architecture. 

I have created an ontology of functions specific to the modeling system of the navigation system of a 
spacecraft.  The resulting ontology not only links, at an architectural level, language specific 
instantiations of the modeling system’s code, but also is web-viewable and can act as a documentation 
standard. 

This ontology is proof of the concept that ontological modeling can aid in the integration necessary for 
ISCA to work, and can act as the prototype for future ISCA ontologies. 
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Introduction 
Current spacecraft work as a cooperative group of a number of subsystems. These subsystems include 
but are not limited to Navigation, Attitude Control System, Command and Data Handling, Thermal 
Control, and Telecommunications, which work together to form the spacecraft as we know it. Each of 
these individual subsystems is a complex structure on its own, however, requiring modeling software for 
development, testing, and prediction.  It is the goal of my team to create an overarching software 
architecture called the Integrated Spacecraft Analysis (ISCA) to aid in deploying the discrete subsystems’ 
models (1).  In order to aid in the development of this software, I have examined the use of ontological 
modeling to enhance our software architecture and aid in integration. 

In the remaining portions of this paper, we will look at ISCA and its development more thoroughly.  First, 
we will examine the history of ISCA in the form of earlier versions and designs, current operations 
concept, and, most importantly, where the two former differ.  Next, we will examine ontologies – their 
origin, uses in information science, and eventually the benefit that they can give ISCA.  Lastly, we will 
examine a proof-of-concept ontological model useful to ISCA, the procedure used to implement it, and 
the effectiveness of such a model. 

Introduction to ISCA 
To understand the need for an Integrated Spacecraft Analysis (ISCA) project, it is first necessary to gain a 
basic understanding of the role of modeling in spacecraft operation and prediction.  It is beyond the 
scope of this paper to fully flesh out the uses and benefits of modeling components of a spacecraft, nor 
is it possible in such a brief amount of time to fully explain the complexity of the interactions of the 
subsystems nor the design and modeling process.  Therefore, the following information on these topics 
is exemplary but by no means exhaustive.   

Before sending any commands to a spacecraft, all commands must go through a verification and 
validation phase where models are used “to predict the effect of proposed plans and sequences on 
critical…resources” (1).  Modeling allows command designers to make sure that commands will not 
endanger the spacecraft in any way.  Once a command has been carried out by the spacecraft, modeling 
is used to “predict the state of the [spacecraft] in such a way that it can be compared with actual data 
obtained from downlinked telemetry” (1).  We can see, therefore, that spacecraft modeling software is 
intricately worked into the mission operations of a spacecraft. 

Despite the fact that modeling spacecraft subsystems is necessary and often used, there are a number 
of problems with current modeling system software.  As the designer for the initial version of ISCA, Mark 
Kordon, reports: 

JPL currently uses a variety of homegrown simulation-based spacecraft (S/C) prediction 
and health assessment simulation models and tools to assist in operating its space 
vehicles. These applications are often developed in an ad-hoc manner (i.e. do not follow 
the JPL Software Development Requirements) and are frequently maintained through 
the initiative of individual engineers on a project-by-project basis. They are usually 
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tailored for a specific mission and typically require significant modifications by the 
owner (generally due to lack of documentation) for use on other projects. This often 
leads to different operations processes using different implementations of the same 
simulation models (2). 

To try to mitigate the effects of these problems, the ISCA project was designed to “provide a better 
methodology for designing and deploying the [Modeling System] that is available today” (1).  However, 
ISCA itself has gone through a number of design changes since its earliest implementation.  In order to 
understand how we arrived at the design of ISCA today, it is necessary to understand a little more about 
its predecessors. 

Earlier Versions 
ISCA developed as a part of a larger, multi-mission design system called the Advanced Multimission 
Operation System (AMMOS).  ISCA is an evolution of the Spacecraft Analysis (SCA) subsystem that was 
included in the initial design of AMMOS (3).  The most notable instances of an attempt at an integrated 
version of the SCA are MSAS, the initial implementation of ISCA, and the version of ISCA that is currently 
in development.  Descriptions of these various systems follow. 

MSAS 
Multimission Spacecraft Analysis Subsystem (MSAS) was a proposal in the mid to late 1990s (1) that 
operated as part of the Advanced Multimission Operating System (AMMOS).  A few of the key ways in 
which MSAS attempted integration among models of the spacecraft’s subsystems include: 

1. The use of common analysis software reused many times within the system 
2. The use of the State Table as a common communication data type… 
3. A front panel incorporating the Hewlett Packard Hpvue 
4. A common GUI design for all applications 
5. A catalogue and catalogue system for storage and retrieval of data 
6. A ‘Batch Mode’ or command line execution capability 
7. The use of Application Programming Interfaces (API’s) based on abstract data types (4) 

This design strategy fed directly into the design for the first implementation of ISCA when the scope of 
MSAS was determined too large for time and budget constraints (1). 

ISCA-1 
In 2006, Mark Kordon and his team started working on a different method for creating interoperability 
between models of the various spacecraft subsystems (2).  Their proposal was the original Integrated 
Spacecraft Analysis (referred to here as ISCA-1).  ISCA-1 had the goal of creating a “plug-and-play” 
framework that could incorporate different subsystems’ modeling programs, and could exchange these 
models for updated ones as needed (5).  This integrated framework would have its own Application 
Programming Interface (API), which would allow a user to initialize a simulation run through all 
connected models, execute a simulation (including single stepping), set and read data, write log and 
error files, write checkpoint files, write results files, and end a simulation (6). 
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Though more limited than its predecessor MSAS in that it did not encompass models for Data 
Management and Accountability, Activity Planning and Sequencing, or Data Monitoring and Display (2), 
its scope was wide enough to lead ISCA-1 to fail to deliver on its promises within the allotted budget (1).  
The reviewers of the operations concept claimed that the scope of ISCA-1 was “beyond what has been 
attempted by the team, or anyone else at JPL before” (1).  With limited money and time, the ISCA-1 task 
force was attempting a project that the reviewers found beyond the scope of abilities at JPL with 
funding less than was given to the MSAS team.   

Coupled with additional problems that the review team found with the clarity and maturity of the design 
of ISCA-1 as well as the responsiveness of the requirements, the excessive scope eventually led to the 
discontinuation of ISCA-1. 

Current ISCA 
The failures of both MSAS and ISCA-1 did not mean that the goal of integration among the models of the 
spacecraft’s subsystems was not worth working toward, merely that the angle of approach of the earlier 
versions was flawed.   Because the plan for the current instantiation of ISCA is broad and interacts with 
most of the subsystems of the spacecraft, the plan for its architecture is likewise broad.  Because the 
current ISCA is still in the design phase and currently developing its operations concept, it is my 
intention here to introduce just the very basic idea of the current ISCA, as well as the ways in which it 
differs from the previous attempts. 

The current implementation plan for ISCA aims “to provide a system-wide, integrated interface to the 
modeling capabilities needed in Mission Operations” (3).  The ISCA team would accomplish this by 
creating and adopting a Uniform Modeling Interface (UMI) that would allow users to have access to all 
subsystem models and enable communication between these models.  While at initial glance this seems 
fairly similar to the design of ISCA-1, this new implementation plan takes into account the full 
complexity of the Mission Operation System and reduces the scope of the project substantially.  One of 
the ways in which the scope of the project would be reduced is by incorporating some mission specific 
models into our architecture by linking the internal interfaces with the ISCA architecture.  Such linking 
can be implemented by the use of ontological modeling. 

Introduction to Ontologies 
To understand how an ontology might be useful in the design of ISCA, and the process by which one 
would be built, it is necessary first to understand where ontologies came from, how they are created, 
and most importantly how they can be used within the realms of information and computer science. 

History of Ontologies 
Ontologies in information science are an evolution of a branch of Metaphysics known as Ontology.  The 
name “Ontology” stems from the Ancient Greek words ὀντος (ontos), which is the present participle of 
the verb “to be”, meaning “being” or “that which exists”, and λογἰα (logia), meaning (more-or-less) 
“study” (7).  This philosophical-Ontology is literally the study of existence and reality and defining what 
each of those means, and perhaps most importantly, for our purposes, the study of the fundamental 
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Is 
A Buick A Car 

divisions of things in the world (7).  The concepts of fundamental divisions and defining the domain of 
existence are what are pulled into the information science version of an ontology1. 

In the middle of the twentieth century, as the study of Artificial Intelligence was coming into its own, 
researchers began to understand the need for defining a system of knowledge (7).  If an Artificially 
Intelligent system needs as input a knowledge base from which to extrapolate (based on input-rules) 
additional information or courses of action, then there must needs be a way to define such a knowledge 
base.    The more rigorously one is able to define a knowledge base, the more robust and powerful the 
A.I. system that can come from it (8). 

In 1993, T. Gruber released a paper that is widely credited with offering the first formal definition of an 
ontology from the computer science perspective (7).  Initially, Gruber describes a formally defined 
knowledge base as a conceptualization.  He claims that “[e]very knowledge base, knowledge-based 
system, or knowledge-level agent is committed to some conceptualization, explicitly or implicitly” (8).  
Based on this definition and use of conceptualizations, Gruber defines an ontology as “an explicit 
specification of a conceptualization” (8). 

Ontology Basics 
Simplified from Gruber’s formal definition, an ontology is, basically, a set of concepts and a set of 
relations on those concepts that together define a domain (or knowledge base).  For instance, you could 
define your (very tiny) domain as containing the concepts “Erica”, “A car”, and “A Buick”, and the 
relations “Is” and “Drives”.   More complicated rules defining the domain can be built up using these 
concepts and relations.  For instance, we can link “A Buick” and “A car” together with the relationship 
“Is” to define “A Buick Is A Car”.   

 

 

Alternatively, we can link together “Erica” and “A Buick” together with “Drives” to form “Erica Drives A 
Buick”. 

 

 

 

                                                           
1 There is a natural language problem here when referring to the abstract, non-count noun “Ontology” when it 
refers to the philosophical study of existence as opposed to the counted, concrete noun “an ontology” when 
referring to a described knowledge base in the realm of computer science.  The count noun “an ontology” is newer 
and not universally recognized, though it will continue to be used within this paper. 

Drives 
A Buick Erica 

Figure 1:  An Example of Two Related Concepts in the Example Domain 

Figure 2:  A second Example of Two Related Concepts in the Example Domain 
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It can be helpful to think of the concepts and their relations as, respectively, the nouns and verbs of a 
sentence.  In these two instances we have created the sentences “A Buick is a car” and “Erica drives a 
Buick”. 

Of course, not all ontologies are as simplistic as the preceding demonstration.  Most have sets of 
relations and concepts that are much larger than the one described, depending on the complexity of the 
domain needing to be described.  The same basic premises apply, however, regardless of the size of the 
concept and relation sets.  In most ontologies, though, the sets of concepts are further divided into a 
number of classes.  These classes contain concepts that have a certain degree of similarity, and can 
themselves contain further sub-classes.  Classes also can act as elements within the ontology, and are 
able to relate to other concepts via a relation.  For example, in the above domain we specified the 
concepts “A Buick” and “A Car”.  Though it might be evident that, in the real world, a Buick is a type of 
Car, such a relationship has not been formally specified.  We can to represent this within the domain by 
declaring that “A Car” is a class that contains the element “A Buick”. 

 

 

 

 

 

Implicit in the use of classes within a set of concepts is the relation “Is a” or “Are”.  In Figure 3, we have 
visually denoted that “A Buick” is an element of the class “A Car”, but this can just as easily be said as “A 
Buick Is A Car”.  In essence, we can replace the statement X ∈ Y with X is a Y, using either membership in 
a class or a formally specified ontology relationship “Is a” as a definition. 

It is important to remember that these classes containing concepts can themselves act as concepts, 
meaning that they can be linked to other concepts via relations.  Therefore, while “A Car” is a class, it 
can still act as a concept in something like “Erica Drives A Car”.  This also means that classes containing 
concepts can aact as members themselves of other classes. 

 

 

 

 

Of course, there are other levels of complexity that can be included in an ontology.  Concepts can have 
attributes helping to define the concept, and classes within classes can create varying levels of 
hierarchies within the domain.  The set of relations can also come with rules and restrictions limiting 

A Car 

A Buick 

Figure 3:  A Class Containing an Element 

Drives 
Erica 

Figure 4:  A Class Can Act as a Concept within an Ontology 
A Car 
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how they can interact with concepts, and the entire domain can come with axioms defining the system.  
However, the basic idea of a set of concepts and a set of relations defining how they interact can be 
viewed as a simple outline of an ontology. 

Ontology Languages 
There are, of course, many different languages with which to write an ontology.  Which one is chosen 
ultimately depends on how the ontology is intended to be used (on the web, in conjunction with existing 
programming, whether you have a great deal of axioms, etc…) 

One of the more popular web-based ontology languages is the Web Ontology Language (OWL2).  OWL is 
“a computational logic-based language such that knowledge expressed in OWL can be reasoned with by 
computer programs either to verify the consistency of that knowledge or to make implicit knowledge 
explicit” (9).  Unpacking this a little, OWL is designed to represent an ontology in a logical (that is, 
mathematically logical) way that enables artificially intelligent agents and programs to both access the 
ontology and draw conclusions from it.  OWL is also a notoriously web-based ontology language that 
relies upon (but is not limited to) XML (eXtensible Markup Language (10)), RDF (Resource Description 
Framework (11)), and RDFS (Resource Description Framework Schema (12)) structures for its syntax.  
OWL’s use of web-languages allows it to “represent machine interpretable content on the web” (13). 

One of the most interesting ways in which OWL implements this web-based interoperability is by 
associating every concept with an International Resource Identifier (IRI), which are generalizations of 
Uniform Resource Identifiers (URIs) that may contain any Unicode character (14).  By associating 
concepts with IRIs, OWL provides each concept with a unique identifier that can be used or mapped to 
by many different documents or agents, ensuring a similar definition of each concept among users and 
collaborators. 

Ontologies for Information Science 
It turns out that there are myriad uses for ontologies within the realm of information and computer 
science beyond aiding in defining Artificial Intelligence knowledge bases.  Without going into detail on 
them all, I would like to talk about the uses that have the most impact and import on the task of creating 
an ontology for ISCA, specifically the use of ontologies during the Analysis and Design and the 
Deployment and Run Time phases. 

Analysis and Design Phase 
In looking at the uses of ontological modeling during the Analysis and Design phase, we will examine 
specifically the uses in requirements engineering, component re-use, and documentation. 

Requirements Engineering 
One of the big constraints on working on ISCA is the need to incorporate models from most (if not all) of 
a spacecraft’s subsystems.  Requiring the design team to become experts within the domain of each 
subsystem is infeasible.  Likewise, being able to accurately model domains that require experts is itself 
                                                           
2 The creators of OWL thought that the acronym “WOL”, though technically correct in representing “Web Ontology 
Language”, was more difficult to remember than “OWL”, and so chose the latter as their acronym. 
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an undertaking.  This is not a problem inherent only to the creation of ISCA, but rather a recurring theme 
in requirements engineering.  Traditionally, requirements information is gathered and used in natural 
language, which leaves us with the problem that natural language is replete with inconsistencies and 
ambiguities3 (15).   To ensure that we can accurately incorporate all models, a shared formal (i.e. non-
natural language) understanding of the domain must be in place. 

To this end, we can use an ontology that “describe[s] requirements specification documents…and 
formally represent[s] requirements knowledge” (16).  This allows us to model domains that require 
expert knowledge without requiring the designers to become experts themselves, and offers the 
assurance of accuracy not necessarily provided in natural language.   

Component Re-use 
An interesting characteristic of ISCA is that there have been multiple past attempts at its creation.  For 
us, this means that, while the goals and specifications have changed since past attempts, there exist 
already the beginnings of a coded implementation.  By creating an ontological model that formally 
describes the function of components at the design phase of this ISCA, we can see (both structurally and 
visually) instances where older implementations can be re-used.  Also notable, we can likewise see 
instances where any new code we write can be re-used.  Component re-use, whether between project 
implementations or within one, is generally desired since it helps “avoid rework, save money and 
improve the overall system quality” (16).  

Documentation 
Additionally, creating an ontology during the design phase of ISCA can lead toward better 
documentation of the program itself.   The initial ISCA Operations Concept claims that most spacecraft 
modeling software “are usually tailored for a specific mission and typically require significant 
modifications by the owner…for use on other projects” (2) due to lack of documentation. Maintenance 
on existing software systems is necessary and is in fact “one of the most dominant activities in Software 
Engineering” (16).  If we model the ISCA architecture using an ontology to formally explicate the 
relations between subsystems and code, we will have additionally created a documented model of the 
functionality of our code – one that is easy to evolve for future modifications and uses.   Furthermore, 
the resulting documentation will be programming language independent and readable even by those 
who know no programming languages. 

Such ontological documentation can also lead to benefits in bug-finding, updating, and testing software 
code.  An ontology modeling the way in which the code interacts can lead to better predictions about 
the location of a bug having an effect on a certain aspect of the program.  The same holds true for fixing 
the bug or updating the code; the ontology allows the programmer to see what other aspects of the 
code are affected by a certain module.  An ontological model can also help in testing the code by 
generating “basic test cases since they encode domain knowledge in a machine process-able format” 
(16). 

                                                           
3 Often in field of linguistics, this same concept is referred to as “the richness” of language.  Unfortunately, in the 
realm of requirements engineering such richness can be tolerated only at the cost of accuracy. 
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Deployment and Run-time Phase 
Though most benefits from ontological modeling occur during the analysis and design phase, there are 
also possible benefits during deployment of the software.  This is especially pertinent if one is able to 
view ISCA as a form of middleware between the user and the various models of the subsystems of the 
spacecraft.  Such “middleware” can become complex when trying to manage different component 
dependencies (17). An ontology modeling this middleware, powered by formal logic, creates a 
conceptual model that “may be queried, may foresight required actions…or may be check to avoid 
inconsistent system configurations” (18) that can be used to mitigate this complexity.  Additionally, we 
can foresee a time when the pre-existing models of various subsystems will change or update.  We can 
ontologically model these updates, and then map the resulting ontology to the old one or into the ISCA 
ontology itself, limiting the amount of work necessary to incorporate model updates. 

Early Designs 
The initial idea for using ontological modeling in ISCA was to create a model of an abstract, overarching 
structure of the various subsystems of a spacecraft and individual domain ontologies of the various 
subsystems.  This would create a shared vocabulary between the subsystems and within the program 
architecture, allowing information to be shared more easily.  Such an ontology would make use of the 
aforementioned benefits of ontological modeling in the following ways.  During the requirements 
engineering phase, ontological modeling allows us to represent information given to us by domain 
experts in a rigorous, formal way.  During the design of the software, ontological models of the domains 
allow us to see areas where we can reuse code from prior versions of ISCA or code that we have already 
written ourselves.  During the run-time of our software, we could rely on mappings within the ontology 
to associate various aspects of the subsystems’ models, and eventually use these mappings to 
incorporate new models.  The resulting code would then come with its own ontological documentation, 
allowing our successors to update or fix the code with ease. 

Initial Design 
Whereas in previous versions of the ISCA attempts were made to create a “plug-and-play” architecture, 
fitting different models directly into the ISCA code, our initial design of the ontology would allow us 
instead to map into ISCA, limiting the amount of necessary code refactoring.  This allows for a greater 
freedom of design in the individual subsystems’ models, which is necessary especially as some of the 
models have already been created and defined. 

To demonstrate this capability, we initially decided to model the domain of the Attitude Control System 
(ACS), a particular subsystem of the spacecraft in charge of keeping and changing the spacecraft’s 
attitude.  Currently, ACS is using a modeling system called Slewth, or Slewtooth. Slewtooth was designed 
to model and predict the attitude behavior of NASA’s Dawn spacecraft4 and monitor for constraint 
violations (19).  Because Slewtooth is, at this point, specific to the spacecraft Dawn, the programmers 

                                                           
4 Dawn is a deep space mapping mission heading to two asteroids, Vesta and Ceres, in the asteroid belt between 
Mars and Jupiter.  It was launched in September of 2007 and will reach its first target, Vesta, before this paper is 
finished. 
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were able to include the actual flight software for that spacecraft.  This allows them to reference the 
actual power steering code used by the Dawn spacecraft for more accurate predictions. 

By starting with an ontological model of Slewtooth and the ACS modeling software, we can start to see 
where individual subsystems’ models are dependent on information from other subsystems (like flight 
software or Navigation output).  By creating a set of generalized abstract relations, we can allow for 
different serializations at these focal points, allowing for greater use of ISCA.   

First Draft 
My first attempt at modeling Slewtooth was an ontological model of every module, input, output, or 
mode contained within Slewtooth.  Such a model resulted in 25 concept nodes, 4 relations, and 30 
propositions (that is “concept-relation-concept” groups) without including Slewtooth’s access to the 
flight software.  See Figure 5:  A Partial View of the First Attempt at Creating a Slewtooth Ontology to 
view what such an ontology looked like. 

 

Figure 5:  A Partial View of the First Attempt at Creating a Slewtooth Ontology 

Such a description of Slewtooth could aid the ISCA team’s understanding of Slewtooth itself and could 
aid in representing Slewtooth within the confines of ISCA.  However, while this generalized model of 
what Slewtooth represents could be applied to more spacecraft than just Dawn, in order to make ISCA 
sustainable over multiple missions we have to allow for changes within the internal structure of 
Slewtooth or the abandonment of Slewtooth as a modeler all together.  To this end, an ISCA ontology 
must have a way to mandate necessary inputs into any ACS modeler, any necessary outputs from an ACS 
modeler, and any points within an ACS modeler where access to information from another subsystem is 
necessary that is not specific to Sleewtooth. 
 

Second Draft 
This led to a second draft of an ontological modeling of Slewtooth or ACS software, which was less 
complex, though potentially more informative to the ISCA objective.  The second draft incorporates the 
idea of a “black-box” model of Slewtooth, mandating only the inputs, outputs, and connections with 
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other modeling systems so that Slewtooth itself could be removed or its inner-workings changed 
without necessarily affecting the model.  This new, simpler ontology resulted in 11 concept nodes, 5 
relations, and 9 propositions for the Slewtooth portion alone.  See Figure 6:  A Full view of a Basic ISCA 
Ontology with the ACS Subsystem Specified to see what this new ontological model looked like. 

 
Figure 6:  A Full view of a Basic ISCA Ontology with the ACS Subsystem Specified 

 
 
The new ontology showed only those points where the ACS modeling system might interact with other 
models or subsystems, including the flight software.  In this sense, we are no longer looking at an 
ontological model of JUST the Slewtooth or ACS domain, but rather a portion of the domain of ISCA 
itself.  A simpler model like this allows us to see the mapping points between ontologies of different 
subsystems, which will turn, in the future, to the mapping points between the modeling systems of 
different subsystems. 

Problems 
Both ontological models of Slewtooth looked promising, and potentially helpful in the overall product of 
ISCA, but there were some inherent problems with the overall concept of these designs.  These draft 
ontologies were both trying to model the interaction of Slewtooth with the overall spacecraft and the 
ISCA design, but because there is limited time to the internship and thus our work on this project, we 
were unable to gain access to the code of Slewtooth to see exactly how it interacted with other 
applications.  Additionally, the new version of ISCA is still in the early stages of design, currently refining 
its operations concept.  Because the actual architectural design of the ISCA UMI is still variable, 
ontologically modeling the design or ontologically linking to the design seemed dangerous.  In order to 
still demonstrate the usefulness of an ontology within the domain of ISCA, we were forced to focus 
down the ontology in two ways.  The first focus lowered the domain from ontologically modeling the 
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interaction of an entire subsystem with the ISCA UMI to modeling one aspect of a particular modeling 
program.  The second focus changed the use of the ontology; instead of a high-level, abstract backbone 
to the entire ISCA system, the new ontology design would allow for web-enhanced, user-level 
integration.  The resulting ontology would stand as a proof of concept of the ideas of integration 
between subsystems, as well as a proof of the concept of the usefulness of ontologies in software 
design.  These two new foci, along with the new design of the ontology, will be explained in depth 
below. 

ISCA Proof of Concept 
The newly refocused version of the ISCA ontology aimed at making the functions of a program called 
SPICE more accessible to other modeling programs, in particular a program called APGEN.   This 
approach was decided upon after observing users of SPICE and the methods by which they accessed 
SPICE.  To better understand our goals with this ontology, a basic understanding of both SPICE and 
APGEN is necessary. 

SPICE 
SPICE is an information system built by the Navigation and Ancillary Information Facility to assist “in 
planning and interpreting scientific observations from space-borne instruments” (20).  A difficult 
acronym to unpack, SPICE more or less stands for Spacecraft ephemeris; Planet, satellite, comet, or 
asteroid ephemerides; Instrument description; C-matrix;  and Events – though in truth more navigation 
information than that can be contained within SPICE files.  Information held in these SPICE files is used 
to model the location of the spacecraft in space or the locations of objects in space from the point of 
view of the spacecraft.  SPICE is a standard that is available to the public and used by many different 
groups and applications.  

APGEN 
APGEN – or Applications Generator – is a “planning tool component of the Mission Planning & 
Sequencing Program Element” (20).  It allows for visualization of mission scenarios, recognition of 
constraint violations, support in sequence building and resource and constraint analysis.  Users can 
specify resources – power, fuel, etc. – and events that use those resources, and then plan with respect 
to time the order that those events occur.  By providing APGEN with restraints on resources, APGEN can 
provide information on when the user’s plan violates a resource constraint, as well as report on how 
long a given plan will take to operate.  As an initial input, APGEN can take navigation and location 
information in the form of SPICE files, and can even call SPICE functions.  In talking with proficient 
APGEN users (21), it became clear that in order to use SPICE functions, individual function wrappers that 
allowed the functions to be called from APGEN had to be created in user-defined files for even limited 
functionality. 

Integration Plan 
We decided to create an ontological model of the SPICE functions based on C-SPICE, or the C version of 
the SPICE functions, which is the most often used format.  However, within the ontology each function 
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would be linked to its Fortran, Matlab, and IDL function counterpart.  In this sense, the SPICE ontology 
would be populated with the abstract SPICE functions, and each of these nodes would be associated 
with up to four different instantiations of the functions in the different programming languages.  This 
allows users of SPICE to access the same ontology for documentation of the SPICE functions in any 
language. 

However, this does not solve the problem of needing to wrap the functions in order to use them from 
APGEN.  To address this problem, the goal was to associate wrappers with each function node in the 
ontology.  Eventually this proved to be unfeasible given the limited time, so instead pseudocode was 
attached to each function that, when implemented, would convert data types and functions into calls to 
an xmlrpc server version of the SPICE functions.  This would allow users to call SPICE functions more 
easily from other applications.  

Creating the SPICE Function Ontology 
To create the ontology of the SPICE Functions, I took the information compiled in the CSPICE API 
Function Guide (22) and converted it into a comma-separated file.  I then manually unembedded the 
URLs, added the keywords and the inputs, outputs, and parameters associated with each Function, and 
saved the resulting file as an Excel spreadsheet.  I treated this file as my base; because most current 
users of SPICE use the C-SPICE version, it seemed that the SPICE ontology itself would be most usable if 
based on the C-SPICE version.  To this, I added the function procedures for the corresponding version of 
each function in C, Fortran, Matlab, and IDL. 

 

Figure 7:  SPICE Functions Converted into Excel Spreadsheet 

The resulting data needed some preprocessing before it could be converted to a usable ontology format.  
Some keywords associated with the functions were present in both plural and singular forms (i.e., 
“Ellipse” and “Ellipses”).  The decision was made to go with the singular form except in those cases 
where a plural keyword matched up with a section of the C-SPICE required reading documents (23).  
Those keywords could still be easily linked with the corresponding required reading documents, but now 
functions with a keyword “Ellipse” would be grouped with those associated a keyword “Ellipses”.  
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Additionally, there was not always a direct isomorphism between functions in one language with those 
in another.  For instance, the decision was made to base the ontology on the C-SPICE functions, as C-
SPICE is the most often used form of SPICE currently, though originally SPICE was designed for Fortran.  
There are 1008 Fortran SPICE functions, but only 507 C-SPICE functions.  On top of that, there are 37 C-
SPICE functions that do not correspond to any Fortran function.  The Matlab version of SPICE (called 
MICE) has only 179 functions; however, 12 of these correspond to no C-SPICE function5.  Only in Icy, the 
IDL version of SPICE, does every function correspond with a C-SPICE function (though, because there are 
only 370 function in Icy, the converse  is not true).  Correctly associating the different versions of each 
function nrequired manually matching and checking each function. 

After preprocessing the data, I then used <oXygen> XML (24) editor to automatically translate the 
spreadsheet into an XML document containing each functions name, description, URL, keywords, 
number of inputs, number of outputs, and number of parameters, input and output data types, and the 
C, Fortran, Matlab, and IDL procedures. 

 

Figure 8:  Initial XML Representation of SPICE Function Information 

To create a viable OWL/RDF version of the C-SPICE ontology, I wrote an XSL stylesheet to convert the 
XML version of the SPICE Functions into OWL/RDF.  This stylesheet needed to convert each Function into 
an OWL class, create OWL classes out of each Keyword and output data types, and associate each 
Function/OWL class with the correct keyword and output data type parent classes.  This resulted in 62 
Keyword-based classes, an additional class for those functions without keywords, 7 output data type 
classes, 507 leaf function nodes, and an additional 9 Data Type leaf nodes.  

While manipulating the XML version of the ontology, we also added in additional information to make 
the ontology more robust and more usable.  We included nodes that defined the SPICE data types 
SpiceInt, SpiceBoolean, SpiceChar, SpiceChar *, Array, Enum, and SpiceCell, and, most importantly, 
offered users pseudocode for converting these SPICE data types, using either c++ or Java, into XMLRPC 

                                                           
5 Generally, these MICE functions that do not correspond to a C-SPICE function are special Matlab duplicates of C-
SPICE functions that already exist in the MICE library.   
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calls.  I also added label and content information, as well as links to parent nodes (where applicable), 
leading to required reading documents. 

Viewing the SPICE Function Ontology 
A side effect of this enforced hierarchy based on Keywords and Output data type associated with each 
SPICE function is that often nodes belonged to multiple parent classes.  In fact, it is rare that a function-
node is not associated with multiple parents, the average being about 2.5 parents to each child.  This 
means that each of the 507 children will have Multiple connections leading away from it.  While this is 
not necessarily a problem for an ontology, it gives the resulting model a less-taxonomic appearance that 
is neither immediately appealing nor parsable to the human mind. 

Because of the issue of multiple parent classes for each function-node, I determined that the best option 
for viewing the ontology would be to use a hyperbolic viewer.  A hyperbolic viewer displays tree-
structured hierarchies on a non-Euclidean, Poincarean plane that can re-center on any selected node 
(25).  Such a viewer would allow us to show the vast amount of leaf function nodes from the ontology, 
as well as the interconnectedness between parent classes and each child function, with limited 
confusion.  Initial concepts for this design were influenced by the display used by MultiTree: A Digital 
Library of Language Relationship (26), which uses a hyperbolic viewer to display large amounts of 
genetic language relationship data. 

Initially, I chose a hyperbolic viewer called Hypergraph (27) to model the ontology because of its ease in 
producing Java applets and its open source nature.  Hypergraph cannot read OWL/RDF, however, nor 
will it read straight XML; instead, it relies on XML that is compliant with the GraphXML format.  
GraphXML is an interchange format designed to support pure, mathematical graph descriptions as well 
as the needs of informational visualization applications (28).  To create a GraphXML format of the spice 
function ontology, I used a second stylesheet, this time designed to convert from the OWL/RDF version 
of the ontology into GraphXML. 

However, despite the use of a hyperbolic viewer, the resulting ontology view was still chaotic and lacked 
any clarity necessary to be used for documentation and learning purposes.  Most of this chaos was due 
to the large number of leaf nodes and having multiple parents for each child, creating a complex, large, 
web-structure. 
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Figure 9:  HyperGraph Hyperbolic view of the SPICE Function Ontology 

Because of the lack of clarity and therefore lack of usefulness, my co-intern and I decided to find an 
alternative hyperbolic viewer.  We decided on using Treebolic, a similar open source hyperbolic viewer 
that allowed for more editing of visualization code and that used a different, clearer visual style (29).  In 
addition to changing hyperbolic viewers, we decided to clone leaf function nodes.  In the earlier, 
Hypergraph version of the ontology, each function was linked to multiple parent classes (keywords, 
input number, etc.).  In the Treebolic version, each parent was allowed to create its own version of the 
function children in order to limit the number of edges and aid in clarity.  This meant that the original 
507 functions now produced 1367 leaf nodes. 

However, Treebolic does not read OWL/RDF ontologies, XML, or even GraphXML versions.  I once again 
wrote a stylesheet to create the “Treebolic” version of the ontology, complete with cloned nodes.  Each 
node comes equipped with tool tips outlining the function procedure and detailed inputs, outputs, and 
parameters, as well as a link that opens up the online documentation page associated with each 
function. 
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Figure 10:  The XML View of the Treebolic Ontology 

 

 

Figure 11:  Treebolic Ontology with Web Interface, Tooltips Visible 

Using the SPICE Function Ontology 
The Treebolic visualization of the ontology allowed us to display every SPICE function, as well as 
additional documentation associated with each node.  However, the functionality was still limited using 
an unedited version of Treebolic.  My co-intern edited the Treebolic code to include tabbed 
documentation viewing, the option to output the procedure of a selected function, the ability to choose 
the output language, and robust search functionality.  The ontology searches through the description 
and label for each function, and returns all the functions that contain the search query.  Clicking on any 
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returned function will automatically center the hyperbolic viewer on that particular node, allowing for 
immediate visualization of the search query as well as easy access to the documentation and usability 
encoded into each node. 

As a result of this added functionality to the interface, users can now use the SPICE function ontology to 
search for relevant or useful functions, output the necessary function calls in any available language, 
quickly generate code to convert data types, or simply as a way of viewing and learning the SPICE 
functions.   

 

Figure 12:  The Edited Version of the Treebolic Viewer, with Search Function and Tabs 

Results 
The proof-of-concept ontology that we were able to produce contained the entire library of C-SPICE 
functions, associated with their Fortran, Matlab, and IDL counterparts, as well as the pseudocode that 
would make them more usable from other applications, such as APGEN.  Because the SPICE functions 
are not necessarily hierarchical, a hierarchy was forced on them that separated the functions by 
keywords associated with each function in the documentation as well as output type.  This means that 
functions associated with multiple keywords or output types were repeated, to keep visualization clear 
and simple.  The original 507 C-SPICE functions became a set of 1367 function nodes, with 63 parent 
keyword classes and 7 parent output-type classes.  Each function node contained information about the 
function as well as a link to the corresponding documentation webpages.  An interface was developed 
that allowed the ontology to be viewed in a hyperbolic tree viewer (see Figure 11:  Treebolic Ontology 
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with Web Interface, Tooltips Visible in the Methods section to view what this looks like).  The interface 
also included a robust search functionality, in-window viewing of documentation pages, as well as 
automatic output of the selected function in the programming language of the user’s choice (including 
pseudocode.) 

The resulting ontology also demonstrates many of the aforementioned uses for ontological modeling in 
information science.  The SPICE function ontology acts as a way of modeling the SPICE knowledge 
domain in a way that is easy to use, even by those users who are not experts in SPICE.  Users can easily 
search the entire ontology for words of phrases that appear anywhere within the documentation pages 
for each function, all from a single webpage.  By associating information on input and output data types 
with each function, the ontology can provide the correct pseudocode for translating each data type.  In 
this way, the pseudocode is only input once into the ontology but is reused repeatedly for each function 
where it is applicable.  The ontology also acts as a new standard of documentation for the SPICE 
functions; instead of separate html files for each function as it appears in each different programming 
language, all of the information is held in one place. 

Future Plans 
While we believe that the SPICE ontology and interface acts as a decent proof-of-concept of the 
usefulness of ontologies in integration of spacecraft models, we have also noted some specific places 
where the design may be improved upon, many of which are usability areas that we had intended to 
implement.  The first of these is the inclusion of actual wrappers for the SPICE functions.  It would be 
ideal if users were able to use our ontology to find a SPICE function and output said function completely 
wrapped for the program that they were using, and, while this had been our intention, such usability 
remains undelivered.  Instead, pseudocode is provided for only the C version of the SPICE functions that 
would allow users to, if not immediately than at least with less effort, create the version of the functions 
that they need.  However, adding actual function wrappers as an output from the ontology, for all four 
variations of the SPICE functions, would add an incredible amount of usability to the ontology and 
further aid in integration measures. 

Another area of improvement is in the very documentation of the ontology itself.  While the SPICE 
ontology may be viewed as a form of documentation for SPICE functions – storing information on 
function descriptions and components, as well as associating versions of the same function across 
programming languages – there is little documentation on how to use the ontology and its interface.  If 
the SPICE function ontology were more than a proof-of-concept, if it were being used as actual 
documentation for SPICE or available to the public, such documentation would need to exist. 

Additionally, after speaking with the group currently in charge of SPICE, it was proposed that an 
ontology of SPICE concepts would also by useful.  The SPICE concept ontology would document the 
nouns used in SPICE – everything from ideas like “ephemeris” to examples of ephemerides.  This 
ontology could be linked at the root to the SPICE function ontology and extend the amount of the 
knowledge domain of SPICE that the ontology is able to cover, which would in turn allow for more 
robust documentation and better and more thorough usability.  The initial problem with the creation of 
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this new ontology is the data source for SPICE concepts.  Whereas with the SPICE function ontology the 
initial list of functions was already created, no such list of SPICE concepts currently exists.  However, if 
SPICE concepts could be compiled, then created an ontology model of them and linking the new 
ontology with the already existing one would prove not only relatively simple, with the creation and 
viewing methods already in place, but also markedly helpful. 

However, despite the noted areas of improvement, the SPICE function ontology is a working example of 
the benefits of using ontological modeling for integration.  The ontology demonstrated areas of code re-
use, helped define a knowledge base without expert level knowledge, and resulted in rigorous 
documentation of SPICE.  I believe that a similar use of ontologies can aid in the implementation of the 
new version of ISCA. 
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