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Introduction   

The Mission Planning and Sequencing (MPS) element of Multi-Mission Ground System and Services 
(MGSS) provides space missions with multi-purpose software to plan spacecraft activities, sequence 
spacecraft commands, and then integrate these products and execute them on spacecraft. Jet Propulsion 
Laboratory (JPL) is currently is flying many missions. The processes for building, integrating, and testing the 
multi-mission uplink software need to be improved to meet the needs of the missions and the operations 
teams that command the spacecraft. The Multi-Mission Sequencing Team is responsible for collecting and 
processing the observations, experiments and engineering activities that are to be performed on a selected 
spacecraft. The collection of these activities is called a sequence and ultimately a sequence becomes a 
sequence of spacecraft commands. The operations teams check the sequence to make sure that no 
constraints are violated.  

The workflow process involves sending a program start command, which activates the Automatic Sequence 
Processor (ASP).  The ASP is currently a file-based system that is comprised of scripts written in perl, c-
shell and awk.  Once this start process is complete, the system checks for errors and aborts if there are any; 
otherwise the system converts the commands to binary, and then sends the resultant information to be 
radiated to the spacecraft.   

 

Background   

There are commands that are guaranteed not to harm the spacecraft.  These commands are called Non 
Interactive Commands (NICs) and may be processed automatically without intervention by an operations 
team member. These NICs are typically payload commands, which are tested within the ASP to make sure 
that they do not cause difficulty for the spacecraft.     

The ASP is currently a file-based system that is comprised of scripts written in perl, c-shell and awk.  Within 
the ASP, scripts are referred to by other scripts and this process can become cumbersome when trying to 
trace individual script dependencies.  It can become even more difficult when trying to augment the current 
ASP with a script for a new mission.  It is for these reasons that a revitalization of the ASP is being 
considered.  The revitalization will consider a timeline-based ASP system database instead of the current 
file-based ASP system database.  To initiate this process, more must be known about the current system.   

 

Objectives   

The task is to identify the nature and purpose of all the existing scripts and to identify additional scripts that 
are needed.  Throughout the task, the findings are to be documented.  Part of the project task involves 
becoming acquainted with operations personnel to learn their needs regarding these scripts.  The implicit 
task is to become familiar with c-shell and perl scripting, as well as the ASP process (Figure 1).  The 
purpose of each script is being determined in order to define the preliminary requirements for a possible 
replacement of the file-based system with a timeline-based system.   
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In addition, the program written to automatically retrieve information related to the scripts is stored on a 
server, accessible to those who need it.  The algorithms in the code provide a way to sort out the difference 
between commented lines of code and lines of code that are executed. This is the result of the need to 
avoid misinformation about which lines contain script calls and which simply contain information about 
another script.   

Due to the robust nature of the program developed, the capabilities can be extended to include relationships 
outside the inner ASP.  The extended capabilities will further assist in the development of a revitalization of 
the current file-based ASP system.   

The analysis also resulted in the creation of a document containing all of this information in the same place.  
This document can allow the user to quickly determine key information about a script and its behavior, 
saving time and resources.  The creation of the visual call trees further facilitates the user.   

Overall, the research performed this summer on the ASP will assist in establishing a requirements set for 
the revitalization process.  It provides the information necessary to determine impact to both operations term 
members and software engineers.   

 

Discussion  

The analysis performed on the Automatic Sequence Processor (ASP) ultimately led to a greater 
understanding of how the inner ASP scripts relate to each other.  This new understanding provides greater 
knowledge in general and for the requirements of the ASP that are needed for the revitalization.  It was 
known that the ASP was a complex structure of scripts, but the extent of complication was previously 
unknown.  The results from this analysis give insight into, and provide a map of, the depth of this complexity. 

Initially, the program created for this analysis was meant only to supplement the manual work of searching 
through scripts.  However, as the script became more robust, it became apparent that the program could be 
used as a means of searching in-and-of itself.  The program was also never intended to create call trees 
and store information – this was an additional feature added due to discovery of software capable of 
supplementing and enhancing the program.   

 

Conclusion   

Due to the research of the ASP performed over the summer, the system architecture is known and mapped.  
A complete list of inner ASP script inputs and outputs has been created, along with their respective file type 
and functional description.  A call tree graphically representing script dependencies has been created for 
each script.  

In addition, a program has been created that allows software engineers to determine information regarding 
the dependencies of a given script.  In the future, adding capabilities and increasing usability to extend 
beyond ASP script files could bolster the program.    

At the beginning of the summer, a folder with 363 scripts was the original set of scripts to be analyzed.  Out 
of these 363, 134 were identified as inner ASP scripts, and the remaining were considered wrapper ASP 
scripts.  Because of this research, the inner ASP is now a well-documented system.  This effort allows 
software engineers working in MPS to assess the revitalization with a greater in-depth knowledge of how the 
ASP is organized.  It will also allow MPS personnel to determine the path of NICs. 
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