
Project Report Automatic Sequence Processor Software Analysis Benjamin 1

Project Report
Automatic Sequence Processor Software Analysis
Brandon Benjamin (Space Grant)
Barbara Streiffert (Mentor)
Dennis Page (Co-Mentor)

15 August 2011

Introduction

The Mission Planning and Sequencing (MPS) element of Multi-Mission Ground System and Services
(MGSS) provides space missions with multi-purpose software to plan spacecraft activities, sequence
spacecraft commands, and then integrate these products and execute them on spacecraft. Jet Propulsion
Laboratory (JPL) is currently is flying many missions. The processes for building, integrating, and testing the
multi-mission uplink software need to be improved to meet the needs of the missions and the operations
teams that command the spacecraft. The Multi-Mission Sequencing Team is responsible for collecting and
processing the observations, experiments and engineering activities that are to be performed on a selected
spacecraft. The collection of these activities is called a sequence and ultimately a sequence becomes a
sequence of spacecraft commands. The operations teams check the sequence to make sure that no
constraints are violated.

The workflow process involves sending a program start command, which activates the Automatic Sequence
Processor (ASP). The ASP is currently a file-based system that is comprised of scripts written in perl, c-
shell and awk. Once this start process is complete, the system checks for errors and aborts if there are any;
otherwise the system converts the commands to binary, and then sends the resultant information to be
radiated to the spacecraft.

Background

There are commands that are guaranteed not to harm the spacecraft. These commands are called Non
Interactive Commands (NICs) and may be processed automatically without intervention by an operations
team member. These NICs are typically payload commands, which are tested within the ASP to make sure
that they do not cause difficulty for the spacecraft.

The ASP is currently a file-based system that is comprised of scripts written in perl, c-shell and awk. Within
the ASP, scripts are referred to by other scripts and this process can become cumbersome when trying to
trace individual script dependencies. It can become even more difficult when trying to augment the current
ASP with a script for a new mission. It is for these reasons that a revitalization of the ASP is being
considered. The revitalization will consider a timeline-based ASP system database instead of the current
file-based ASP system database. To initiate this process, more must be known about the current system.

Objectives

The task is to identify the nature and purpose of all the existing scripts and to identify additional scripts that
are needed. Throughout the task, the findings are to be documented. Part of the project task involves
becoming acquainted with operations personnel to learn their needs regarding these scripts. The implicit
task is to become familiar with c-shell and perl scripting, as well as the ASP process (Figure 1). The
purpose of each script is being determined in order to define the preliminary requirements for a possible
replacement of the file-based system with a timeline-based system.

Projec

In add
scripts
types
docum
and an
for a n

Appr

Initially
order t
pertain
used d
of a se
the AS
scripts
docum

Each s
with ot
the pu
consid
the rel
relatio

Becau
progra
scripts
uncom
alphab
that is
Knowl
calls a

ct Report

dition to determ
s to each other
of scripts can b

mentation regar
ny dependenci
new tool can be

roach

y, the task cons
to gain familiar
ning to the ASP
during the entir
et of “inner” AS
SP and its over
s. The inner AS
mented.

script contains
ther scripts. Th

urposes of this
dered a call to t
lationships amo
nships.

use of the tedio
am has the cap
s reference this
mmented lines,
betically in a da
 easily readabl
edge of which

and collecting th

Autom

ining the purpo
. There are sc
be assessed w
rding their resp
es it has with o

e defined and r

sisted of an an
rity with how th
P was retrieved
re ASP process

SP scripts and a
rall functionality
SP scripts were

 information, ex
his dependenc
analysis, any n
that script. On
ong the scripts

ous nature of th
pability to deter
s given script.
 and then looki
ata structure, a
e, with colors a
 script(s) call th
he names of th

matic Sequence

Figure

ose of the vario
cript files that ar
with better docu
pective inputs a
other scripts. W
redundancy elim

nalysis of the A
e scripts were
d. Within this fo
s; some were r
a “wrapper” AS
y, the scripts w
e the main focu

xplicit within th
cy was used in
non-commente
ce a list was cr

s was necessar

his process, a p
rmine which scr
This task is ac
ng for known s

and then output
as a means to
he file is accom
hose script(s) th

e Processor So

e 1. ASP process

ous scripts, it is
re not always u
mentation. In

and outputs, a f
With better doc
minated.

SP system arc
 interrelated on
older, there we
related to one a
SP that calls the
were divided into
us for this proje

e individual line
order to determ
d line of code c
reated, it becam
ry to gain more

program to perf
ript(s) are refer
complished by
script names w
t to a comma-s
quickly separa

mplished by com
hat call the give

oftware Analys

s

s necessary to
used, and the p
 order to be use
functional desc

cumentation of

chitecture. This
n a high level.
ere several hun
another; some
e inner scripts.
o wrapper ASP
ect so it was th

es of code, wh
mine which scr
containing a di
me apparent th

e obvious and m

form this task h
renced by a giv

y, first, reading
within this script
separated file (c
ate and group in
mparing inform
en script. This

is

 determine rela
possibility of co
eful, the scripts
cription, the scr
the scripts, the

s analysis was
Originally, a fo

ndred scripts.
 were not. The
. After becomin
P scripts and in
heir information

hich establishes
ripts called othe
fferent script’s

hat a visual rep
meaningful insi

has been creat
ven script, and
 the given scrip
t. This informa
csv), formatted
nformation (Fig

mation gathered
s information is

Benjamin

ationship of the
ombining these
s need
ript file type,
e requirements

 necessary in
older of scripts
Each one was

e ASP consists
ng familiar with

nner ASP
n that was

s a dependenc
er scripts. For
 name was

presentation of
ight into these

ted. This
 which other

pt’s
ation is stored
d in a manner
gure 2).
d from the scrip
 also stored in

2

e
e

s
h

cy

pt
 a

Projec

separa
first.

In add
& 4. T
trees a
encou
data s
create
softwa
that w
were t

ct Report

ate data structu

dition to script m
The call trees s
are very compl
nter if following
tructure that co

e branches for t
are capable of c
ould build the n
then saved in p

Autom

ure, and output

Figur

mapping in csv
serve as a way
ex (Figure 3); s
g all branches s
ontained comp
the call trees.
creating the vis
necessary files
portable docum

matic Sequence

t to a separate

re 2: Spreadsheet

 files, the progr
 of visually repr
some are not (
starting with th
lete informatio
The task to cre
suals for call tre
s for the call tre
ment format (pd

e Processor So

 csv file, where

t used to store sc

ram also produ
resenting the r
Figure 4). The
e main script.
n about script r
eate the call tre
ees. Once sof

ees during the r
f) files.

oftware Analys

e it is formatted

cript information

uces call trees
relationships am
e call trees repr
 The approach
relations, and t
ees has also in
ftware was foun
relationship inv

is

d using the sam

n

of each file, se
mong the scrip
resent the path

h to this task wa
then use that in
cluded the nee
nd, a subroutin
vestigation. The

Benjamin

me format as th

een in Figures 3
pts; some call
h that one wou
as to create a
nformation to
ed to find
ne was created
ese call trees

3

he

3

ld

Projec

The pr
c-shel
progra
about

Resu

The an
ASP.
accom

ct Report

rogram was als
l, shell or awk f

am analyze how
the type of file

ults

nalysis of the c
 All script relati

mplishes the tas

Autom

so created to q
file (the main fi
w the script wa
 it is.

current file-base
onships are no
sk to investigat

matic Sequence

Figure 3: Call

Figure 4: Call tre

uickly determin
iles of the inne

as initialized; th

ed ASP system
ow known, and
te and docume

e Processor So

l tree for store_fi

ee for dom_inter

ne the script file
r ASP). This ta
e initialization o

m led to a great
 the system arc
nt the inner AS

oftware Analys

le script

rface script

e types. That
ask was accom
of the script co

ter appreciation
chitecture has
SP script set.

is

is, whether a s
mplished by hav
ontains implicit

n of the comple
 also been map

Benjamin

script was a pe
ving the
 information

exity of the
pped. This

4

rl,

Project Report Automatic Sequence Processor Software Analysis Benjamin 5

In addition, the program written to automatically retrieve information related to the scripts is stored on a
server, accessible to those who need it. The algorithms in the code provide a way to sort out the difference
between commented lines of code and lines of code that are executed. This is the result of the need to
avoid misinformation about which lines contain script calls and which simply contain information about
another script.

Due to the robust nature of the program developed, the capabilities can be extended to include relationships
outside the inner ASP. The extended capabilities will further assist in the development of a revitalization of
the current file-based ASP system.

The analysis also resulted in the creation of a document containing all of this information in the same place.
This document can allow the user to quickly determine key information about a script and its behavior,
saving time and resources. The creation of the visual call trees further facilitates the user.

Overall, the research performed this summer on the ASP will assist in establishing a requirements set for
the revitalization process. It provides the information necessary to determine impact to both operations term
members and software engineers.

Discussion

The analysis performed on the Automatic Sequence Processor (ASP) ultimately led to a greater
understanding of how the inner ASP scripts relate to each other. This new understanding provides greater
knowledge in general and for the requirements of the ASP that are needed for the revitalization. It was
known that the ASP was a complex structure of scripts, but the extent of complication was previously
unknown. The results from this analysis give insight into, and provide a map of, the depth of this complexity.

Initially, the program created for this analysis was meant only to supplement the manual work of searching
through scripts. However, as the script became more robust, it became apparent that the program could be
used as a means of searching in-and-of itself. The program was also never intended to create call trees
and store information – this was an additional feature added due to discovery of software capable of
supplementing and enhancing the program.

Conclusion

Due to the research of the ASP performed over the summer, the system architecture is known and mapped.
A complete list of inner ASP script inputs and outputs has been created, along with their respective file type
and functional description. A call tree graphically representing script dependencies has been created for
each script.

In addition, a program has been created that allows software engineers to determine information regarding
the dependencies of a given script. In the future, adding capabilities and increasing usability to extend
beyond ASP script files could bolster the program.

At the beginning of the summer, a folder with 363 scripts was the original set of scripts to be analyzed. Out
of these 363, 134 were identified as inner ASP scripts, and the remaining were considered wrapper ASP
scripts. Because of this research, the inner ASP is now a well-documented system. This effort allows
software engineers working in MPS to assess the revitalization with a greater in-depth knowledge of how the
ASP is organized. It will also allow MPS personnel to determine the path of NICs.

Project Report Automatic Sequence Processor Software Analysis Benjamin 6

Bibliography

Christiansen, T. & Torkington, N. (1999). Perl Cookbook. Sebastopol, California: O’Reilly & Associates, Inc.

Wall, L & Schwartz, R. L. (1990). Programming perl. Sebastopol, California: O’Reilly & Associates, Inc.

Gilly, D. (1992). UNIX in a Nutshell. Sebastopol, California: O’Reilly & Associates, Inc.

Stubblebine, T. (2003) Regular Expression Pocket Reference. Sebastopol, California: O’Reilly & Associates,
Inc.

Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was
sponsored by Space Grant and the National Aeronautics and Space Administration.

I would like to Acknowledge Section 317 and all the help and support I have received, especially from the
following:

Barbara Streiffert, Mike Mozingo, Mitchell Schrock, Ben Smith, Tim Reeve, Laurie Francis, & Terry Himes

__ __

Brandon Benjamin Date Dennis Page Date

