Project Report

Automatic Sequence Processor Software Analysis
Brandon Benjamin (Space Grant)

Barbara Streiffert (Mentor)

Dennis Page (Co-Mentor)

15 August 2011

Introduction

The Mission Planning and Sequencing (MPS) element of Multi-Mission Ground System and Services
(MGSS) provides space missions with multi-purpose software to plan spacecraft activities, sequence
spacecraft commands, and then integrate these products and execute them on spacecraft. Jet Propulsion
Laboratory (JPL) is currently is flying many missions. The processes for building, integrating, and testing the
multi-mission uplink software need to be improved to meet the needs of the missions and the operations
teams that command the spacecraft. The Multi-Mission Sequencing Team is responsible for collecting and
processing the observations, experiments and engineering activities that are to be performed on a selected
spacecraft. The collection of these activities is called a sequence and ultimately a sequence becomes a
sequence of spacecraft commands. The operations teams check the sequence to make sure that no
constraints are violated.

The workflow process involves sending a program start command, which activates the Automatic Sequence
Processor (ASP). The ASP is currently a file-based system that is comprised of scripts written in perl, c-
shell and awk. Once this start process is complete, the system checks for errors and aborts if there are any;
otherwise the system converts the commands to binary, and then sends the resultant information to be
radiated to the spacecraft.

Background

There are commands that are guaranteed not to harm the spacecraft. These commands are called Non
Interactive Commands (NICs) and may be processed automatically without intervention by an operations
team member. These NICs are typically payload commands, which are tested within the ASP to make sure
that they do not cause difficulty for the spacecraft.

The ASP is currently a file-based system that is comprised of scripts written in perl, c-shell and awk. Within
the ASP, scripts are referred to by other scripts and this process can become cumbersome when trying to
trace individual script dependencies. It can become even more difficult when trying to augment the current
ASP with a script for a new mission. It is for these reasons that a revitalization of the ASP is being
considered. The revitalization will consider a timeline-based ASP system database instead of the current
file-based ASP system database. To initiate this process, more must be known about the current system.

Objectives

The task is to identify the nature and purpose of all the existing scripts and to identify additional scripts that
are needed. Throughout the task, the findings are to be documented. Part of the project task involves
becoming acquainted with operations personnel to learn their needs regarding these scripts. The implicit
task is to become familiar with c-shell and perl scripting, as well as the ASP process (Figure 1). The
purpose of each script is being determined in order to define the preliminary requirements for a possible
replacement of the file-based system with a timeline-based system.

Project Report Automatic Sequence Processor Software Analysis Benjamin 1

[Abort & [Abort &
Notify Notify

t t

“No ‘Ermo

1 1

Do —> NIC—> NIC? — Yes —» SeqGen —»/ No —> SLINC
M

Error l

SCMF Gen

{

(Radiate ¢— Notfy 4— Notify UCS/
ACE uLS

Figure 1. ASP process

In addition to determining the purpose of the various scripts, it is necessary to determine relationship of the
scripts to each other. There are script files that are not always used, and the possibility of combining these
types of scripts can be assessed with better documentation. In order to be useful, the scripts need
documentation regarding their respective inputs and outputs, a functional description, the script file type,
and any dependencies it has with other scripts. With better documentation of the scripts, the requirements
for a new tool can be defined and redundancy eliminated.

Approach

Initially, the task consisted of an analysis of the ASP system architecture. This analysis was necessary in
order to gain familiarity with how the scripts were interrelated on a high level. Originally, a folder of scripts
pertaining to the ASP was retrieved. Within this folder, there were several hundred scripts. Each one was
used during the entire ASP process; some were related to one another; some were not. The ASP consists
of a set of “inner” ASP scripts and a “wrapper” ASP that calls the inner scripts. After becoming familiar with
the ASP and its overall functionality, the scripts were divided into wrapper ASP scripts and inner ASP
scripts. The inner ASP scripts were the main focus for this project so it was their information that was
documented.

Each script contains information, explicit within the individual lines of code, which establishes a dependency
with other scripts. This dependency was used in order to determine which scripts called other scripts. For
the purposes of this analysis, any non-commented line of code containing a different script's name was
considered a call to that script. Once a list was created, it became apparent that a visual representation of
the relationships among the scripts was necessary to gain more obvious and meaningful insight into these
relationships.

Because of the tedious nature of this process, a program to perform this task has been created. This
program has the capability to determine which script(s) are referenced by a given script, and which other
scripts reference this given script. This task is accomplished by, first, reading the given script's
uncommented lines, and then looking for known script names within this script. This information is stored
alphabetically in a data structure, and then output to a comma-separated file (csv), formatted in a manner
that is easily readable, with colors as a means to quickly separate and group information (Figure 2).
Knowledge of which script(s) call the file is accomplished by comparing information gathered from the script
calls and collecting the names of those script(s) that call the given script. This information is also stored in a

Project Report Automatic Sequence Processor Software Analysis Benjamin 9

separate data structure, and output to a separate csv file, where it is formatted using the same format as the

first.

Details Parameters Communication
Identifier |~ Name of Script [+1. Type |~ Functional Description v Inputs ' Outputs v Called By & Calls v
sasf_name dom_interface I
§ . seq_id s, pef, scmf, seq_symbol |run_satf get_sc_info
2 add_nipeec_to_pdb cshell Adds the nipeeefiles onto the project database (pdb) [epoiaded o oast asiclog |rucsest g
pdb_stat store_file
- — — [reqid N
3 i e e Adds arequest tothe spacecrat actvity sequence ile (4% star_time, user_id, processor e load) R
(sash) appended to "sasf_name.sasf" |make_cond_sast
time (request start time)
Sasf_file_name : process_fas_file
2 2dd_to_queue_log c-shell Adds an incoming ASP request to the back queve log. [user date, sasf_file_name, user, node | "6 e awk RAD_SCMF A
appended to "queue_log s
node process_frfs.awk
. ; 7 autoexecute
2 add_vml_flags c-shell Passes the appropriate input to add_vml_flags.awkto [nioag a created file with the flags | generate_vm! add_vml_flags.awk
determine proper flags. E
input_file
o i il gk = Reads the input seq_id.vml file and adds appropriate [autoexecute print out to command line of |add_vml_flags "
flags to it flags set set_vml_flags
reentrant
N A - aero_type sets the seq_id and printsitout.| .
2 acro_seq_id_gen cshell (Generates seqid for the ASP for aerobraking sequences (107 ittt entralay run_sasf get_sc_info
Sends notification that an ASP has been started or __[asp_name Sends a message (0 either tb_ws)
2 asp_mail cshell . asp_processor send_mail
sto asp flag & dev_ws or to all users
'ASP (Automated Sequence Processor) % domain_HoH -main data W———
This is the main control process redesign. It is required structure, key is {member} P
. asp_version
) . 1o replace the current queuing process which is currently [config path (overrides default) |contains Name, Domain, "
1 asp_processor perl ; o i start_aspii asp_viewer
done thru email. The new design will make use of the ~|asp_processor_name Dom_Server, timer, e Tt
DOM LWP (Distributed Object Manager, Light Weight Spacecraft_IDs, hostname, e
process_fifs
Process) hostpid. heartbeat
s asp_version text Text file containing current asp version A A Rsp_processor A
asp_viewer
This i the user Viewer process and not to be confused
with the ASP Processor's which was split off. ASP
’ . . Viewer will only monitor all ASP Remote Processes, | Takes process informationand |Shows current processes " o oo
asp_viewer P Create and Update ASP Config file to dictate how many [displays it in a GNU window running and monitors status |* [*6p_yenion
ASP Remote Processor's can be started and which
Spacecraft ID's each of the ASP Processor's will hande.
Reads the stored sequence file (SSF) and checks the :
1 nk_cmd_ i fil sl A
chk_cmd_limit perl e o s ssf_input_file seq_translate
curdate
2 constrain_time c-shell Sets up spacecraft clock on UTC-0 pracecrait information from UTC time file_load et _0_sclk
‘get_sc_info’ get_sc_info
translate_file name
z convert_spk [cshell Sends o command line Sfdu_spk et cdb_file B
2 correct_conditions_for_sasf |c-shell (Creates proper format for spacecraft activity sequence |, ¢ ;e fincon_updates run_sasf A
fite (sash)
it code from this program
seq_id by correct_transmitter_min_dur_en
s a version number, NOT a
version vawk
2 correct_transmitter_min_dur [c:shell status gen_soe_dk
sc_id . . gen_tx._trigger
b if the version returned is "03", gy
e it gets returned as "3" pe_display
file_name
Outpu files file_name, Outpu files,
A correct_transmitter_min_dur_[, Prints information received from EVENTS EVENTS, seqgen.sasf, i s g
envawk correct_transmitter_min_dur to the commant line seqgen.sasf RUNLOG, UPLINK to . S k
RUNLOG command line
UPLINK

Figure 2: Spreadsheet used to store script information

In addition to script mapping in csv files, the program also produces call trees of each file, seen in Figures 3

& 4. The call trees serve as a way of visually representing the relationships among the scripts; some call

trees are very complex (Figure 3); some are not (Figure 4). The call trees represent the path that one would

encounter if following all branches starting with the main script. The approach to this task was to create a
data structure that contained complete information about script relations, and then use that information to

create branches for the call trees. The task to create the call trees has also included the need to find

software capable of creating the visuals for call trees. Once software was found, a subroutine was created
that would build the necessary files for the call trees during the relationship investigation. These call trees

were then saved in portable document format (pdf) files.

Project Report

Automatic Sequence Processor Software Analysis

Benjamin

3

ouglni

i
&
5

:

RRC
B0

CallingFile Main Levell Level 2 Level 3 Level 4 Level 5 Level §

Figure 4: Call tree for dom_interface script

The program was also created to quickly determine the script file types. That is, whether a script was a perl,
c-shell, shell or awk file (the main files of the inner ASP). This task was accomplished by having the
program analyze how the script was initialized; the initialization of the script contains implicit information
about the type of file it is.

Results

The analysis of the current file-based ASP system led to a greater appreciation of the complexity of the
ASP. All script relationships are now known, and the system architecture has also been mapped. This
accomplishes the task to investigate and document the inner ASP script set.

Project Report Automatic Sequence Processor Software Analysis Benjamin 4

In addition, the program written to automatically retrieve information related to the scripts is stored on a
server, accessible to those who need it. The algorithms in the code provide a way to sort out the difference
between commented lines of code and lines of code that are executed. This is the result of the need to
avoid misinformation about which lines contain script calls and which simply contain information about
another script.

Due to the robust nature of the program developed, the capabilities can be extended to include relationships
outside the inner ASP. The extended capabilities will further assist in the development of a revitalization of
the current file-based ASP system.

The analysis also resulted in the creation of a document containing all of this information in the same place.
This document can allow the user to quickly determine key information about a script and its behavior,
saving time and resources. The creation of the visual call trees further facilitates the user.

Overall, the research performed this summer on the ASP will assist in establishing a requirements set for
the revitalization process. It provides the information necessary to determine impact to both operations term
members and software engineers.

Discussion

The analysis performed on the Automatic Sequence Processor (ASP) ultimately led to a greater
understanding of how the inner ASP scripts relate to each other. This new understanding provides greater
knowledge in general and for the requirements of the ASP that are needed for the revitalization. It was
known that the ASP was a complex structure of scripts, but the extent of complication was previously
unknown. The results from this analysis give insight into, and provide a map of, the depth of this complexity.

Initially, the program created for this analysis was meant only to supplement the manual work of searching
through scripts. However, as the script became more robust, it became apparent that the program could be
used as a means of searching in-and-of itself. The program was also never intended to create call trees
and store information — this was an additional feature added due to discovery of software capable of
supplementing and enhancing the program.

Conclusion

Due to the research of the ASP performed over the summer, the system architecture is known and mapped.
A complete list of inner ASP script inputs and outputs has been created, along with their respective file type
and functional description. A call tree graphically representing script dependencies has been created for
each script.

In addition, a program has been created that allows software engineers to determine information regarding
the dependencies of a given script. In the future, adding capabilities and increasing usability to extend
beyond ASP script files could bolster the program.

At the beginning of the summer, a folder with 363 scripts was the original set of scripts to be analyzed. Out
of these 363, 134 were identified as inner ASP scripts, and the remaining were considered wrapper ASP
scripts. Because of this research, the inner ASP is now a well-documented system. This effort allows
software engineers working in MPS to assess the revitalization with a greater in-depth knowledge of how the
ASP is organized. It will also allow MPS personnel to determine the path of NICs.

Project Report Automatic Sequence Processor Software Analysis Benjamin 5

Bibliography

Christiansen, T. & Torkington, N. (1999). Perl Cookbook. Sebastopol, California: O'Reilly & Associates, Inc.
Wall, L & Schwartz, R. L. (1990). Programming perl. Sebastopol, California: O'Reilly & Associates, Inc.

Gilly, D. (1992). UNIX in a Nutshell. Sebastopol, California: O’Reilly & Associates, Inc.

IStubblebine, T. (2003) Regular Expression Pocket Reference. Sebastopol, California: O’Reilly & Associates,
nc.

Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was
sponsored by Space Grant and the National Aeronautics and Space Administration.

| would like to Acknowledge Section 317 and all the help and support | have received, especially from the
following:

Barbara Streiffert, Mike Mozingo, Mitchell Schrock, Ben Smith, Tim Reeve, Laurie Francis, & Terry Himes

Brandon Benjamin Date Dennis Page Date

Project Report Automatic Sequence Processor Software Analysis Benjamin 6

