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Motivation 

Growth in Code Size for Manned and Unmanned Missions
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• Complexity of software continues to grow 
• As complexity increases, the ability to test software becomes extremely difficult 
• Challenge: Producing reliable software [Source: Holzmann, “Software Size and Complexity”  

presentation] 



Objective 

• Model OSEK (Open Systems and the Corresponding Interfaces for 
Automotive Electronics) services for verification of multitask 
applications that are intended to be OSEK compliant 

OSEK services: 
Task management and Scheduling, 
Resource Management, 
Alarms and events, 
Interrupt handling, 
Conformance class specification 

OSEK Task Model 



Approach 

Idea: Avoid exploring unnecessary paths and states 



Model Checking with SPIN 

• Promela (Process Meta Language) 
• Language for modeling finite-state, concurrent systems 
• Finite and bounded data structures 
• Synchronization and message passing constructs 

 

• SPIN (Simple Promela Interpreter) 
• Explicit state model checker 
• Simulation and verification engine for Promela models 
• Provides translation of Linear Temporal Logic properties to Promela models 

Promela 
parser 

simulation 
compilation 

errors 

Verification
model 

Model 
checker 

counter examples 

SPIN 

Promela 
model 



Example: Avoiding Priority Inversion 

• Priority inversion is a problem that occurs when a higher 
priority task is blocked inadvertently by a lower priority task 

[Source: E. A. Lee and S. A. Seshia, Introduction to Embedded Systems - A Cyber-Physical Systems Approach, 
www.LeeSeshia.org, 2011.] 
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Promela Model of a Multitask Application 
#include “osek.h” 
byte data = 0; 
RESOURCE(mutex, 10); 
TASK (high, 10) { 
 … 
 OSEK_GetResource(mutex); 
 data--; printf("task high consumes data, %d\n", data); /* critical section - consume data */  
 OSEK_ReleaseResource(mutex); 
 … 
} 
TASK (medium, 5) { 
 do 
 :: … 
     printf("task medium is running\n"); 
                     assert(data == 0);  /* check that data is produced*/ 
 od 
} 
TASK (low, 2) { 
 do 
         :: … 
                    OSEK_GetResource(mutex); 
             run high(); run medium(); 
     data++; printf("task low produces data, %d\n", data); /* critical section - produce data */ 
     OSEK_ReleaseResource(mutex); 
                     assert(0) 
  od 
} 



Promela Model of a Multitask Application 
#include “osek.h” 
byte data = 0; 
RESOURCE(mutex, 10); 
TASK (high, 10) { 
 … 
 OSEK_GetResource(mutex); 
 data--; printf("task high consumes data, %d\n", data); /* critical section - consume data */  
 OSEK_ReleaseResource(mutex); 
 … 
} 
TASK (medium, 5) { 
 do 
 :: … 
     printf("task medium is running\n"); 
                     assert(data == 0);  /* check that data is produced*/ 
  
 od 
} 
TASK (low, 2) { 
 do 
         :: … 
                    OSEK_GetResource(mutex); 
             run high(); run medium(); 
     data++; printf("task low produces data, %d\n", data); /* critical section - produce data */ 
     OSEK_ReleaseResource(mutex); 
                     assert(0) 
  od 
} 

Specification of OSEK task, priority,  
and OSEK-specific parameters 

Specification of OSEK resources and  
resource management services 

Library of OSEK services (provides  
interface to user application model) 



Verification of the Application Model 

• Verifies that priority inversion does not occur in the application model 
• Ensures that the application model applies OSEK library services correctly 
• Validates the implementation of the OSEK Ceiling Protocol 

 task low produces data, 1 
          task high consumes data, 0 
              task medium is running 
              task medium is running 
              task medium is running … 

Full statespace search for: 
        never claim             - (none specified) 
        assertion violations    + 
        acceptance   cycles     - (not selected) 
        invalid end states      + 
 
State-vector 36 byte, depth reached 28, errors: 0 
       21 states, stored 
        1 states, matched 
       22 transitions (= stored+matched) 
        8 atomic steps 
hash conflicts:         0 (resolved) 
 

SPIN verification: SPIN simulation output: 



Summary 

 

•Extended SPIN to support verification and simulation of 
priority based scheduling policies 

 

•Constructed a library of services that provides an OSEK 
interface that is useful for the verification of multitask 
applications 

 

• Future Work 
• Complete the OSEK specification (i.e. address interrupt handling 

services, alarms, events, conformance classes) 
• Apply, validate, and measure the performance of more practical 

examples 



Additional Slides 

 



Steps to LTL Model Checking Using Automata 
Theoretic Approach 

• Step 1: translate both system model M to automaton, AM and 
negated property,        to automata,  
 

• Step 2: compose product automata, P, 
 
 
• Step 3: check for emptiness 

• Is                                     graph search? 
 
Yes: system model, M is correct!  
No: system model, M violates property φ, produce error trace 
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