Model Checking Multitask Applications
for OSEK Compliant Real-Time
Operating Systems

Mark L. McKelvin, Jr., Edward Gamble, and Gerard Holzmann
Laboratory for Reliable Software
Jet Propulsion Laboratory
California Institute of Technology

PRDC 2011
December 12-14

Acknowledgment: Copyright 2011 California Institute of Technology. The work described in this presentation was performed at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

Motivation

Growth in Code Size for Manned and Unmanned Missions

10000000
I unmanned
1000000 I manned
— — Expon. (unmanned)
< 100000 — — Expon. (manned)
©
@
> 10000
k)
(7,' 1000 -+
(&]
4
x 100
10 -
1 B T T T T T T T T T

1968
1970 |
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004

Year of Mission

e Complexity of software continues to grow
o As complexity increases, the ability to test software becomes extremely difficult

e Challenge: Producing reliable software [Source: Holzmann, “Software Size and Complexity”

presentation]

Objective

 Model OSEK (Open Systems and the Corresponding Interfaces for
Automotive Electronics) services for verification of multitask
applications that are intended to be OSEK compliant

OSEK services:
Task management and Scheduling,
Resource Management,
Alarms and events,
wait A terminate Interrupt handling,
Conformance class specification

preemt start suspended

release activate

OSEK Task Model

{a}

{p, a}

{p}

system model, M = (M, My)

model checking problem: M |=¢

Approach

|> model checking
algorithm: F

T

@

p: G(p > Xq)

property specification

Property satisfied, M |=¢ ?

Yes: property satisfied
No: generate counter example

‘ challenge: state explosion

o Given: R, a set of RTOS properties (i.e. policies, rules)

o Construct, M, =4, A4,, ..., A, a finite automata model of the RTOS behavior as a
composition of n RTOS component behaviors and an application behavior M ,

Idea: Avoid exploring unnecessary paths and states

© Model Checking with SPIN

e Promela (Process Meta Language)

e Language for modeling finite-state, concurrent systems
e Finite and bounded data structures
e Synchronization and message passing constructs

e SPIN (Simple Promela Interpreter)

e EXxplicit state model checker
e Simulation and verification engine for Promela models
e Provides translation of Linear Temporal Logic properties to Promela models

SPIN

Promela Promela Verification Model
model parser model

checker

compilation
errors simulation counter examples

@

Example: Avoiding Priority Inversion

® Priority inversion is a problem that occurs when a higher
priority task is blocked inadvertently by a lower priority task

priority
! S o task 1 blocked
high task 1 v
— = = | S
= o, e 9 ' 2
o ' :R H ' :
medium task 2 8 %E © 5' EJE :a
i 5 . & O :
low task3 !
|
| >
U : . . 8 10

[Source: E. A. Lee and S. A. Seshia, Introduction to Embedded Systems - A Cyber-Physical Systems Approach,
www.LeeSeshia.org, 2011.]

@

Promela Model of a Multitask Application

#include “osek.h”

byte data = 0;
RESOURCE(mutex, 10);
TASK (high, 10) {

OSEK GetResource(mutex);
data--; printf("task high consumes data, %d\n", data); /* critical section - consume data */
OSEK ReleaseResource(mutex);

}
TASK (medium, 5) {
do

printf("task medium is running\n");
assert(data == 0); /* check that data is produced*/

od
}
TASK (low, 2) {

do

OSEK GetResource(mutex);
run high(); run medium();
data++; printf("task low produces data, %d\n", data); /* critical section - produce data */
OSEK ReleaseResource(mutex);
assert(0)
od

@

Promela Model of a Multitask Application

#include “osek.h” g Library of OSEK services (provides

byte data = 0; interface to user application model)
RESOURCE((mutex, 10);

TASK (high, 10) {

OSEK_GetResource(mutex);
data--; printf{"task high consumes
OSEK _ReleaseResource(mutex);

%d\n", data); /* critical section - consume data */

) Specification of OSEK resources and
TASK (medium, 5) { resource management services
do
printf(""task medium is running\n");
assert(data == 0); /* check that data is produced*/
od
h o o .
TASK (low, 2) { Specification of_C_)SEK task, priority,
do and OSEK-specific parameters

OSEK_GetResource(mutex);
run high(); run medium();
data++; printf("task low produces data, %d\n", data); /* critical section - produce data */
OSEK_ReleaseResource(mutex);
assert(0)
od

@

SPIN verification:

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 36 byte, depth reached 28, errors: 0
21 states, stored
1 states, matched
22 transitions (= stored+matched)
8 atomic steps
hash conflicts: 0 (resolved)

Verification of the Application Model

SPIN simulation output:

task low produces data, 1
task high consumes data, 0
task medium is running
task medium is running
task medium is running ...

e Verifies that priority inversion does not occur in the application model
e Ensures that the application model applies OSEK library services correctly
e Validates the implementation of the OSEK Ceiling Protocol

Summary

e Extended SPIN to support verification and simulation of
priority based scheduling policies

e Constructed a library of services that provides an OSEK
interface that is useful for the verification of multitask
applications

e Future Work

e Complete the OSEK specification (i.e. address interrupt handling
services, alarms, events, conformance classes)

e Apply, validate, and measure the performance of more practical
examples

Additional Slides

@ Stepsto LTL Model Checking Using Automata
Theoretic Approach

e Step 1: translate both system model M to automaton, 4,, and
negated property, —¢ to automata, 4_,

e Step 2: compose product automata, P,

P=L(4y x4 ,)=L(4,, N4 ,)=L4,)NL4.,)

e Step 3. check for emptiness
o Is L(4,, N4 ,)=D= graph search?

Yes: system model, M is correct!
No: system model, M violates property ¢, produce error trace

	Model Checking Multitask Applications for OSEK Compliant Real-Time Operating Systems
	Motivation
	Objective
	Approach
	Model Checking with SPIN
	Example: Avoiding Priority Inversion
	Promela Model of a Multitask Application
	Promela Model of a Multitask Application
	Verification of the Application Model
	Summary
	Additional Slides
	Steps to LTL Model Checking Using Automata Theoretic Approach

