
Model Checking Multitask Applications
for OSEK Compliant Real-Time

Operating Systems
Mark L. McKelvin, Jr., Edward Gamble, and Gerard Holzmann

Laboratory for Reliable Software
Jet Propulsion Laboratory

California Institute of Technology

PRDC 2011
December 12-14

Acknowledgment: Copyright 2011 California Institute of Technology. The work described in this presentation was performed at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

Motivation

Growth in Code Size for Manned and Unmanned Missions

1

10

100

1000

10000

100000

1000000

10000000
19

68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

Year of Mission

KN
CS

L
(lo

g
sc

al
e)

unmanned
manned
Expon. (unmanned)
Expon. (manned)

• Complexity of software continues to grow
• As complexity increases, the ability to test software becomes extremely difficult
• Challenge: Producing reliable software [Source: Holzmann, “Software Size and Complexity”

presentation]

Objective

• Model OSEK (Open Systems and the Corresponding Interfaces for
Automotive Electronics) services for verification of multitask
applications that are intended to be OSEK compliant

OSEK services:
Task management and Scheduling,
Resource Management,
Alarms and events,
Interrupt handling,
Conformance class specification

OSEK Task Model

Approach

Idea: Avoid exploring unnecessary paths and states

Model Checking with SPIN

• Promela (Process Meta Language)
• Language for modeling finite-state, concurrent systems
• Finite and bounded data structures
• Synchronization and message passing constructs

• SPIN (Simple Promela Interpreter)
• Explicit state model checker
• Simulation and verification engine for Promela models
• Provides translation of Linear Temporal Logic properties to Promela models

Promela
parser

simulation
compilation

errors

Verification
model

Model
checker

counter examples

SPIN

Promela
model

Example: Avoiding Priority Inversion

• Priority inversion is a problem that occurs when a higher
priority task is blocked inadvertently by a lower priority task

[Source: E. A. Lee and S. A. Seshia, Introduction to Embedded Systems - A Cyber-Physical Systems Approach,
www.LeeSeshia.org, 2011.]

high

medium

low

priority

Promela Model of a Multitask Application
#include “osek.h”
byte data = 0;
RESOURCE(mutex, 10);
TASK (high, 10) {
 …
 OSEK_GetResource(mutex);
 data--; printf("task high consumes data, %d\n", data); /* critical section - consume data */
 OSEK_ReleaseResource(mutex);
 …
}
TASK (medium, 5) {
 do
 :: …
 printf("task medium is running\n");
 assert(data == 0); /* check that data is produced*/
 od
}
TASK (low, 2) {
 do
 :: …
 OSEK_GetResource(mutex);
 run high(); run medium();
 data++; printf("task low produces data, %d\n", data); /* critical section - produce data */
 OSEK_ReleaseResource(mutex);
 assert(0)
 od
}

Promela Model of a Multitask Application
#include “osek.h”
byte data = 0;
RESOURCE(mutex, 10);
TASK (high, 10) {
 …
 OSEK_GetResource(mutex);
 data--; printf("task high consumes data, %d\n", data); /* critical section - consume data */
 OSEK_ReleaseResource(mutex);
 …
}
TASK (medium, 5) {
 do
 :: …
 printf("task medium is running\n");
 assert(data == 0); /* check that data is produced*/

 od
}
TASK (low, 2) {
 do
 :: …
 OSEK_GetResource(mutex);
 run high(); run medium();
 data++; printf("task low produces data, %d\n", data); /* critical section - produce data */
 OSEK_ReleaseResource(mutex);
 assert(0)
 od
}

Specification of OSEK task, priority,
and OSEK-specific parameters

Specification of OSEK resources and
resource management services

Library of OSEK services (provides
interface to user application model)

Verification of the Application Model

• Verifies that priority inversion does not occur in the application model
• Ensures that the application model applies OSEK library services correctly
• Validates the implementation of the OSEK Ceiling Protocol

 task low produces data, 1
 task high consumes data, 0
 task medium is running
 task medium is running
 task medium is running …

Full statespace search for:
 never claim - (none specified)
 assertion violations +
 acceptance cycles - (not selected)
 invalid end states +

State-vector 36 byte, depth reached 28, errors: 0
 21 states, stored
 1 states, matched
 22 transitions (= stored+matched)
 8 atomic steps
hash conflicts: 0 (resolved)

SPIN verification: SPIN simulation output:

Summary

•Extended SPIN to support verification and simulation of
priority based scheduling policies

•Constructed a library of services that provides an OSEK
interface that is useful for the verification of multitask
applications

• Future Work
• Complete the OSEK specification (i.e. address interrupt handling

services, alarms, events, conformance classes)
• Apply, validate, and measure the performance of more practical

examples

Additional Slides

Steps to LTL Model Checking Using Automata
Theoretic Approach

• Step 1: translate both system model M to automaton, AM and
negated property, to automata,

• Step 2: compose product automata, P,

• Step 3: check for emptiness

• Is graph search?

Yes: system model, M is correct!
No: system model, M violates property φ, produce error trace

	Model Checking Multitask Applications for OSEK Compliant Real-Time Operating Systems
	Motivation
	Objective
	Approach
	Model Checking with SPIN
	Example: Avoiding Priority Inversion
	Promela Model of a Multitask Application
	Promela Model of a Multitask Application
	Verification of the Application Model
	Summary
	Additional Slides
	Steps to LTL Model Checking Using Automata Theoretic Approach

