A Prototyping Effort for the Integrated
Spacecraft Analysis System

Raymond Wong, Yu-Wen Tung, and Pierre Maldague
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

Abstract—Computer modeling and simulation has recently become an essential technique for predicting and validating
spacecraft performance. However, most computer models only examine spacecraft subsystems, and the independent
nature of the models creates integration problems, which lowers the possibilities of simulating a spacecraft as an
integrated unit despite a desire for this type of analysis. A new project called Integrated Spacecraft Analysis was
proposed to serve as a framework for an integrated simulation environment. The project is still in its infancy, but a
software prototype would help future developers assess design issues. The prototype explores a service oriented design
paradigm that theoretically allows programs written in different languages to communicate with one another. It includes
creating a uniform interface to the SPICE libraries such that different in-house tools like APGEN or SEQGEN can
exchange information with it without much change. Service orientation may result in a slower system as compared to a
single application, and more research needs to be done on the different available technologies, but a service oriented
approach could increase long term maintainability and extensibility.

1 INTRODUCTION

With advances in computing technology, modeling
and simulations has played a vital role in the
analysis of spacecraft systems for over a decade,
especially as an aid for mission planning and
execution.[1] Integrated Spacecraft Analysis (ISCA)
is a proposed project within the Jet Propulsion
Laboratory (JPL) that signifies a desire to improve
spacecraft modeling and simulation techniques.
This paper discusses the motivation for ISCA, a
software development activity to support software
design, and some technologies that may prove use-
ful in achieving the project’s goals.

2 ISCA BACKGROUND

Mission planners use computer simulations to pre-
dict spacecraft behavior, which allows them to
make decisions about resource allocation and usage
that help achieve goals in science and planetary
studies. For each project, several teams of engineers
focus on a particular area of the spacecraft, and
they have the responsibility to develop high fidelity
models of their respective subsystems. Each model
was typically implemented with a unique configu-
ration, and they worked well for their purposes.
However, the ad-hoc manner in which some
models were created tend to prevent the same

model from being used again on a similar space-
craft. The Advanced Multi-Mission Operations Sys-
tem (AMMOS) was created to alleviate some porta-
bility issues by producing adaptable, multi-mission
tools.[2]

Engineers eventually leveraged the multi-mission
power (MMPAT) and telecommunications model
(MMTAT) to create an integrated simulation en-
vironment for the Deep Impact (DI) mission, at
least for planning activities and creating command
sequences. They created interfaces to MMPAT and
MMTAT such that another multi-mission tool, the
Activity Plan Generator (APGEN), can communi-
cate with those models.[3]

Previously, data from one model was written to
some repository for another team to use as input
for their model. For example, attitude information
from the Attitude Control System (ACS) model
in APGEN was written to a set of files, properly
formatted, and transfered to the Thermal Subsys-
tem and Telecom Subsystem teams for analysis. If
other teams found problems with the current plan,
they report their findings back to the planners for
correction. Since APGEN could interface with its
own telecom model for DI, planners could per-
form a simulation with MMTAT and adjust their
plans before handing it off to the Telecom team,
a much more cost-effective process than the previ-
ous approach. The downsides of the DI initiative

were increased “organizational complexity” and
non-standard, non-multi-mission interfaces to the
models.[3]

ISCA seeks to emulate the same capabilities from
DI for future missions by providing a standard-
ized simulation framework for different teams to
“plugin” their model and perform a simulation.
Since models are “plugged” into the framework,
a team may use models from previous phases of
the same mission, reducing the team’s need to
reproduce a similar model from scratch nor adjust
their current simulation environment. Therefore the
major requirements of ISCA call for an extensible
software framework to accommodate a variety of
existing spacecraft models.

3 SERVICE ORIENTATION

One design path for ISCA leads to a paradigm
known as service orientation.[4] A paradigm com-
prises of a set of rules or principles that help attain
certain characteristics in the software solution, and
most paradigms try to apply an idea called Sepa-
ration of Concerns.[4][5]

Separation of Concerns “deals with creating dis-
tance between dissimilar aspects of your code.”[6]
In other words, Separation of Concerns suggest
a software developer should solve a problem by
breaking the problem down into smaller distinct
components or “concerns,” then tackling the prob-
lem by dealing with each “concern.” One of the
main goals for applying this concept is increased
maintainability.[6]

3.1

Service-orientation can fulfill the goals of Separa-
tion of Concerns through its set of design princi-
ples: standardized service contracts, service loose
coupling, service abstraction, service reusability,
service autonomy, service statelessness, service dis-
coverability, and service composability. Each of
these principles are applied to the design of soft-
ware services, programs that perform a set of tasks
when requested.[5]

Design Principles of Service Orientation

3.1.1 Standardized Service Contracts

Standardized service contracts require services
within the same group to conform to a set of
standard communication protocols or schemes.[5]
Standardization promotes consistency and reliabil-
ity across different environments because it allows
the consumer of services to understand the service’s

capabilities, the data it requires, and the communi-
cation mechanism needed to transfer the data.[5]
An analogy is that customers expect delivery per-
sons to bring their package to the doorstep of the
delivery address. If one delivery person brings the
package to the door while another delivery person
leaves the package on the sidewalk outside the
home, then the customer has no expectation for
where the next person may leave the package.
However, a standardized practice for all delivery
services, whether the package is delivered at the
doorstep or the sidewalk, but preferably at the
doorstep, gives the customer consistency.

3.1.2 Loose Coupling

Service loose coupling refers to the desire for ser-
vice implementations to have small dependencies
on the communication implementation and to its
customers.[5] This allows the logic behind a service
to change without forcing major changes to occur
in other services or the service contracts.

3.1.3 Abstraction

Service abstraction contributes to loose coupling
because “it emphasizes the need to hide as much of
the underlying details of the service as possible.”[5]
The ability to hide details allows the service logic
to change while still providing the capabilities it
promised using the same communication standard
expected from it.

3.1.4 Reusability

Service reusability stresses the importance for ser-
vices to be independent of the larger application’s
goals.[5] A service may perform one or a series of
minute tasks, and a collection of services, used in a
certain manner, achieve a larger purpose. However,
a service designed to be reusable can perform the
same capabilities and contribute to the achievement
of another purpose, eliminating the need to pro-
duce a new service by way of an existing service.

3.1.5 Autonomy

Service autonomy suggests services should have
control over their environment.[5] Restated, ser-
vices should have the freedom to use resources
within the bounds of the contract to complete their
job description.[7]

3.1.6 Statelessness

Service statelessness says a service does not need
to manage and maintain the data it used in its
past invocations. Instead, the service only needs
to maintain the necessary states and data to help
it process the current request. The name ”State-
lessness,” according to solution architect Michael
Poulin, is “misleading” because the service does
have a state.[8]

3.1.7 Discoverability

Service discoverability refers to information that
allows potential consumers to figure out how to
use the service. This may refer to documents that
describe the service contracts and capabilities, such
as a diagram or text file, and the documents should,
ideally, contain no ambiguity such that only one
interpretation of each service exist.[9]

3.1.8 Composability

Service composability directly supports Separa-
tion of Concerns because the principle advocates
that “small problems collectively represent the big
problem,” which means solutions to each of the
smaller problems aggregate into a larger solution
and solves the larger problem.[5]

These principles add up to an ISCA framework
that would convert standalone models and tools
from each team into services. Several categories of
services, each with their own set of contracts and
capabilities, can exist. This allows, for example, one
ACS model to be exchanged with another ACS
model without forcing the navigational model to
readjust itself. Additional work for each model is
required though. Engineers need to develop an-
other layer on top of each model that is contract
compliant, transforming each model into a service.
Figure 1 illustrates the previous statement.

3.2 Remote Procedure Calls

A variety of technologies are available for develop-
ers to use and build their service oriented applica-
tions, provided they follow the design principles
outlined above. At the moment, this paper will
focus on one type of communication technique
known as remote procedure calls (RPC).

In computer science, a procedure is a set of
instructions for performing some calculation.[10]
In modern computer systems, one procedure, the
caller, may use another procedure, the callee, by
transferring control of the central processing unit

Consumer Consumer

Contract Compluantlnterfaoe -

The interface allows consumers
to use the agreed upon
communication pattern 1o
request services from the

model.
\. J

Fig. 1.
service.

Extra development to convert a model into

(CPU) so that the callee may run its instructions on
the CPU.[11] This transfer mechanism occurs on a
single computer.[11] Remote procedure calls are an
extension of the previously mentioned mechanism
except the called procedure can exist on a different
physical machine, and the transfer of control occurs
over a network.[11] When the called procedure
finishes its computation, it sends the results back
to the caller via the network.[11]

One primary goal of RPC is "the coexistence of
independent execution environments.” In addition,
it aims to let programs call procedures over the
network as simple as making local procedure calls,
which means the RPC protocol tries to hide as much
of the network details as possible.[11]

Both of these features make them an attractive
technique for service orientation because one model
operating under one simulation environment may
call procedures from another model acting under an
entirely different environment, i.e. different mod-
eling languages. In addition, it creates a loosely
coupled system. Different models can have the
same procedure names but have different methods
of completing the same tasks, which means models

can easily be replaced.
A few existing RPC implementations are XML-
RPC, SOAP, CORBA, and DCE.

3.2.1 XML-RPC

XML-RPC is a specification and ”set of implemen-
tations” for making “procedure calls over the Inter-
net.” It uses "HTTP as the transport and XML as
the encoding.” The specifications define how data
types should be represented in XML, and act as
the driving requirements for software developers
to create encoding, decoding, and network libraries
for C/C++, Java, Python, etc. XML is simple to
use, and parsing packages are widely available
for almost every language, which essentially elimi-
nates the communication barriers between different
languages.[12][13]

Some claim the encoding of data to XML works
well for more primitive data types, but it forces
procedures to only handle primitive data types.
In addition, it doesn’t offer as much features as
SOAP, and some consider this lack of features
an unworthy quality for large scale applications.
Furthermore, the translation of large sets of data
to and from XML requires extra information for
the conversion process and creates a performance
bottleneck.[13]

3.22 SOAP

SOAP, which stands for Simple Object Access Pro-
tocol, also uses XML as the encoding scheme.[14]
It offers more features than XML-RPC, which gives
the developer greater freedom to transport complex
data structures. As a result, SOAP has been the
more ideal choice for some larger, business oriented
solutions.[13]

On the other hand, the extra features that SOAP
provides are often overlooked. In many cases, XML-
RPC will perform the job adequately. SOAP also
comes with a higher learning curve, which detracts
some people from using the protocol. Like XML-
RPC, SOAP also has performance limitations.[13]

3.2.3 CORBA

CORBA stands for Common Object Request Bro-
ker Architecture, and is managed by the Object
Management Group. In CORBA, services are rep-
resented as objects, and consumers (also called the
clients) are given object references, values that give
clients indirect access to the service objects. To use
the service, the client makes a request through the

Object Request Broker (ORB), and the ORB redirects
the request to the service object and returns the
service’s results back to the client.[15]

The Interface Definiton Language (IDL) for
CORBA provides interface definitions to service
objects, but the language does not allow developers
to describe the service’s implementation. Instead,
it provides “language bindings for many different
programming languages,” which means the IDL
compiler can generate ”skeleton” code for the ob-
ject in different languages like Java or C++. The
programmer is then left with the task of filling in
the “skeleon” with the necessary logic that satisfy
the service contracts.[15]

According to one criticc, CORBA is well-
supported and works nicely with the popular
programming languages. However, he believes
CORBA is “complex,” “has a steep learning curve,
requires significant effort to implement, and re-
quires fairly sophisticated clients.” CORBA is
"better-suited to enterprise and desktop applica-
tions than it is to distributed web applications.”
He believes CORBA has high enough quality for
small business software but believes its learning
complexities outweigh its use in distributed ap-
plications, software that operate across multiple
computers.[16]

3.24 DCE

The Distributed Computing Environment (DCE) "is
an industry-standard, vendor neutral set of dis-
tributed computing technologies” and it includes
an implementation of remote procedure calls to
support distributed applications.[17][18] The sys-
tem is similar to CORBA and has its own IDL
compiler to generate ”skeleton” code for different
languages. DCE is older but considered more pow-
erful than CORBA because it “offers security and
authentification through Kerberos,” a "network au-
thentification protocol.”[18][19] Thus DCE is among
the favorite solutions for building large applica-
tions, but like CORBA, DCE would also involve a
relatively steep learning curve.[18]

The material above is a short introduction to
some available technologies for ISCA, and a more
thorough analysis is required if remote procedure
calls are to be incorporated as part of a service-
oriented solution.

4 SOFTWARE PROTOTYPING FOR ISCA
In many engineering disciplines, a prototype is
often created to help the engineers solidify their

concepts of the end product. Software engineering
is no different. Some benefits of prototyping include
”gaining understanding of the requirements, reduc-
ing the complexity of the problem and providing
an early validation of the system design.”[20] For a
complex system like ISCA, a prototype could vastly
improve system performance by helping software
engineers analyze a current solution before pro-
ceeding to the next stage of development.

4.1

One of the most frequently used libraries at JPL is
SPICE, a collection of functions for calculating po-
sitions, speeds, frame transformations, vector angle
separations, etc. of Solar System bodies. Creating
an interface to SPICE for other models to use is a
major requirement for ISCA to succeed. Therefore,
my initial step in building a prototype rested on
creating a service-oriented SPICE module.

The group that manages SPICE, NASA’s Navi-
gation and Ancillary Information Facility (NAIF),
wrote the SPICE libraries in four flavors: C, For-
tran, Matlab, and the Interactive Data Language. I
decided to try out XML-RPC with C/C++ as my
communication mechanism, mainly because XML-
RPC is simple and I knew C, which saved me the
time of learning a new language. A person with
some programming experience could quickly learn
how to build an XML-RPC server and client by
looking at the documentation online.

Most of the C SPICE functions return values by
address - they can return more than one value at
a time - and the solution I arrived at meant the
service layer needed to push all the results into
an array and return the array. As I was analyzing
the SPICE functions, I realized I could automate
the process of writing server side code. I wrote a
program that scans through the HTML documents
in the CSPICE toolkit (available from the NAIF
website, see [21]) and creates a file containing all the
information I would need to write a code generator.
Each line in the file contains meta-data for one
function, which are the function return type, the
function name, and the input and output parameter
names and types.

Once I had the properties file, I wrote a code
generator to create C++ classes and class methods
to interact with the SPICE functions, one class for
each SPICE function. Each of the classes define
interface objects that act as interfaces between an
XML-RPC server and the SPICE functions. To create

Initial Phase of ISCA Prototyping

a parellel with the real world, an XML-RPC server
can be seen as a shipping port. The server may
listen at different IP addresses, which correspond
to different docks at the port. For the prototype,
the server only listens at one IP address. When the
server receives network data in XML form, this is
the same as a ship arriving at a dock to deliver
cargo.

Each of the SPICE functions can be viewed as
a factory waiting for their cargo to arrive at the
port. The C++ objects act like factory employees,
providing the link between the port and the factory.
They are responsible for transporting the cargo to
and from the factory, which represent the decoding
of XML data to SPICE data and the encoding of the
SPICE results into XML data.

Most of the generated code focus on the XML and
SPICE translation. When the SPICE function fin-
ishes its computation, all the arguments to the func-
tion, including the input arguments, are pushed
onto an array. This allows the client to look at
the parameters and determine if any side effects
occurred with the function inputs. If the SPICE
function has a void return type, the order of the
values in the array follow the same order as the
parameters that appear in the function prototype. If
the function has a non-void return type, the SPICE
return value is pushed onto the array first, followed
by the arguments to the function as described pre-
viously.

vold spkez_c [Spicelnt targ,
SpiceDouble et,
ConstSpiceChar tref,
ConstSpiceChar *abcorr,
Spicelnt obs,
SpiceDouble stargl6],
SpiceDouble *1t)

Fig. 2. SPICE function prototype in C.

Consider spkez_c and it’s function prototype in
Figure 2. It returns the state of a target body -
the position and speeds in rectangular coordinates
- relative to an observer in some reference frame
through the variable “starg.” It also returns the
amount of time it takes for light to travel between
the observer and target through the variable "1t.”

The function spkez_c returns 7 values (6 Spice-
Doubles from ”starg,” 1 SpiceDouble from ”1t”)
through 2 variables. To return these results back
to the client, the interface object creates an XML-
RPC array, converts “targ” to an XML-RPC integer,

"et” to an XML-RPC double, “"ref” and ”abcorr” to
XML-RPC byte strings and so on. For ”starg,” the
interface object converts it into its own XML-RPC
array, then the object stores the array into the larger
array of results.

Once I completed the SPICE server, I wrote a sim-
ple Java client to make requests to the SPICE server.
Given SPICE kernels from the CSPICE toolkit, the
Java client uses data from the Cassini mission to
plot the state of the spacecraft from Earth. In ad-
dition, the client also plots the angular separation
between the Cassini High Gain Antenna (HGA)
boresight vector and the position of Earth vector
relative to the HGA frame. Both plots go for 3600
seconds starting from 2004 JUN 11 19:32:00. The
plots are given in Figures 3, 4, and 5, and the
client uses JFreeChart to plot the data.

Angular Separation between relative
position of Earth and HGA boresight

75

70

85

w o N N n m o
o m o (3.} o m o

Angular Separation (degrees}
n
(4,

140,255,000 140,256,000 140,257,000
Time after J2000 (sec})

— Angular Separation

140,258,0(

Fig. 3. Angular separation between Cassini HGA
boresight and position of Earth vectors.

Unfortunately, there was not enough time to
verify the correctness of these plots, but it demon-
strates that models and tools can interact with
the SPICE functions regardless of the underlying
implementation language.

Spacecraft Position

3,000
2,000
1,000

-1,000
-2,000
-3,000
-4,000
-5,000
-6,000
-7,000
-8,000
-8,000
-10,000
-11,000
-12,000
-13,000
-14,000
-15,000
-16,000
-17.000
-18,000
-19,000
-20,000
-21,000

Distance (km)

140,255,000 140,256,000 140,257,000 140,258,0(
Time after J2000 (sec)

|— Spacecraft X Position — Spacecraft ¥ Position — Spacecralt Z Positionl

Fig. 4. Position of Cassini relative to Earth.

4.2 The Next Step

Members of the planning and sequencing team
at JPL sometimes write models in one particular
language like the APGEN adaptation language.
However, SPICE functions only exist in C, Fortran,
Matlab, and the Interactive Data Language, which
means developers have to write applications in one
of those four languages in order to use SPICE. With
a service, it decouples the application from SPICE
by resolving language dependencies between the
two software entities.

The next step is to refactor one of the models
written in the adaptation language to make calls to
the SPICE service. A good choice is an ACS model
from Deep Impact. Interface code must be written
again such that APGEN will make remote proce-
dure calls to the SPICE service, but this process can
be done once. Afterwards, modelers only have to
work with the adaptation language. As long as a
compiler or interpreter recognizes the adaptation
language and the service requests, new versions
of APGEN can be deployed without modifying a
model in the adaptation language.

Spacecraft Velocity

4.0
3.5
3.0
2.6
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5

Speed (km/s)

-2.0

-2.5
-3.0
-3.5
-4.0
-4.5
-5.0
-5.5
-6.0

-6.5

140,255,000 140,256,000 140,257,000
Time after J2000 (sec}

140,258,0(

|— Spacecraft X Velocity — Spacecraft ¥ Velocity — Spacecraft £ Velocny|

Fig. 5. The velocity of Cassini relative to Earth.

5 CONCLUDING REMARKS

As I wrote my code for the Java client, it became
clear that modelers who wish to use SPICE from
a different language must implement their own
version of the SPICE data types, such as SpicePlane
or SpiceEllipse. In addition, remote procedure calls
are also intended to work across networks. As a
result, the time it takes for the procedures to run
and return the results may be slower than if the
procedures ran locally on the same machine.

Yet, network speed has dramatically improved
over the years, lowering the concern for network
overhead. Additionally, object oriented program-
ming languages make the extra development of
data types an easy task, and it certainly requires
much less overhead than writing wrappers to
SPICE or reimplementing them in the desired lan-
guage. I believe the greatest difficult in designing
ISCA lies on finding a set of capabilities that can
accomodate a plethora of past models without lim-
iting the power of future models. With a service-
oriented solution, this may be achievable, paving
the way for a maintainable and extensible system.

6 ACKNOWLEGEMENTS

Many thanks to my mentors, Yu-Wen Tung and
Pierre Maldague, my co-interns, Cody Hyman and
Erica Wicks, and Steve Wissler of the EPOXI team
for the support, knowledge, and direction they
provided during my tenure at JPL. This research
was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, and was spon-
sored by the Space Grant Program and the National
Aeronautics and Space Administration.

REFERENCES

[1] N. B. R. P. on Simulation-Based Engineering Science,
“Simulation-based engineering science,” National Science
Foundation, Tech. Rep., May 2006.

[2] “Why use ammos?” Retrieved August 10, 2011. [Online].
Available: http://ammos.jpl.nasa.gov/whyammos/

[3] S. Wissler, P. Maldague,]. Rocca, and C. Seybold, “Deep
impact sequence planning using multi-mission adaptable
planning tools with integrated spacecraft models,” in
AIAA 9th International Conference on Space Operations, June
2006.

[4] T. Erl, “What is soa? - an introduction to service-
oriented computing,” Retrieved August 10, 2011. [Online].
Available: http:/ /www.whatissoa.com

[5] , “Soa principles - an introduction to the service-
orientation paradigm,” Retrieved August 10, 2011.
[Online]. Available: http://www.soaprinciples.com

[6] K. Baley, D. Belcham, and J. Kovacs, “Sepa-
ration of concerns,” Retrieved August 9, 2011.
[Online]. Available: http://msdn.microsoft.com/en-
us/magazine/ek- stremalna-przerobka-asp-net-czesc6-
podzial-obowiazkow.aspx

[7]1 M. Poulin, “Evolution of principles of service orientation:
Service autonomy, part 5,” February 2009. [Online]. Avail-
able: http://www.ebizq.net/blogs/service_oriented /20-
09/02/evolution_of_principles_of_service_or- ienta-
tion_service_autonomy_part_5.php

[8] , “Evolution of principles of service orientation: Ser-
vice statelessness, part 6,” February 2009. [Online]. Avail-
able: http://www.ebizq.net/blogs/service_oriented /20-

09/02/evolution_of_principles_of_service_or- ienta-
tion_service_statelessness_part_6.php

9 — “Evolution of principles of service
orientation: Composability ~ and discoverability,
part 7,” February 2009. [Online]. Available:
http:/ /www.ebizq.net/blogs/service_oriented /20-
09/02/evolution_of_principles_of_service_or-
ientation_service_composability_and_discover-
ability_part_7.php

[10] “Definition of procedure,” Retrieved
August 10, 2011. [Online]. Available:

http:/ /dictionary.reference.com /browse/procedure

A. D. Birrell and B. J. Nelson, “Implementing remote
procedure calls,” ACM Transactions on Computer Systems,
vol. 2, no. 1, pp. 39-59, 1984.

D. Winer, “What is xml-rpc?” July 2003. [Online].
Available: http://www.xmlrpc.com

(13]

[15]

M. Dehaan, “Xmlrpc vs rest vs soap Vs
cdm vs rmi vs message- bus vs .. lots
of rpc options,” July 2008. [Online]. Available:
http:/ /michaeldehaan.net/2008/07/17 /xmlrpc-vs- rest-
vs-soap-vs-all-your-rpc-options/

M. Gudgin, M. Hadley, N. Mendelsohn,].-J. Moreau,
H. F Nielsen, A. Karmarker, and Y. Lafon,
“Soap version 1.2,” April 2007. [Online]. Available:
http:/ /www.w3.org/TR/soap

jGuru.com, “Introduction to
corba,” 1998. [Online]. Available:
http:/ /java.sun.com/developer/onlineTraining/cor-
ba/corba.html#anchor312271

E. Kidd, “Xmlrpc howto,” April 2001. [On-
line]. Available: http://tldp.org/HOWTO/XML-RPC-
HOWTO/index.html

“What is distributed computing and dce?” January
Retrieved August 10, 2011. [Online]. Available:
http:/ /www.opengroup.org/dce/

L. Vepstas, “Technologies similar to corba,” October 2001.
[Online]. Available: http://linas.org/linux/corba.html
“What is kerberos?” May 2011. [Online]. Available:
http:/ /web.mit.edu/Kerberos /#what_is

L. Bernstein, “Foreword: Importance of software proto-
typing,” Journal of Systems Integration, vol. 6, no. 1-2, 1996.
“Spice,” Retreived August 11, 2011. [Online]. Available:
http:/ /naif jpl.nasa.gov/naif /

