
The Challenge of Configuring Model-Based Space Mission Planners

Jeremy D. Frank**, Bradley J. Clement*,
 John M. Chachere***, Tristan B. Smith+ and Keith J. Swanson**

*Jet Propulsion Laboratory, California Institute of Technology, ***SGT Inc, +MCT Inc., **NASA Ames Research Center
{FirstName.MiddleInitial.LastName}@nasa.gov

Abstract
Mission planning is central to space mission operations, and
has benefitted from advances in model-based planning
software. Constraints arise from many sources, including
simulators and engineering specification documents, and
ensuring that constraints are correctly represented in the
planner is a challenge. As mission constraints evolve,
planning domain modelers need help with modeling
constraints efficiently using the available source data,
catching errors quickly, and correcting the model. This
paper describes the current state of the practice in designing
model-based mission planning tools, the challenges facing
model developers, and a proposed Interactive Model
Development Environment (IMDE) to configure mission
planning systems. We describe current and future
technology developments that can be integrated into an
IMDE.

Introduction
Mission planning is central to space mission operations,
and has benefitted from advanced in model-based planning
software (Reddy et al. 2010, Bresina et al. 2005). A
principal obstacle to fielding model-based planning
systems for space missions is the complexity of domain
modeling. Space mission planning has diverse information
sources such as engineering specification documents
(Barreiro et al. 2010), communication coverage,
simulations of spacecraft subsystems (Ko et al., 2004; Yen
et al., 2005), and trajectory and attitude specifications.
Building a domain model requires identifying these
information sources, understanding them, and often
representing formal abstractions of them.
 Changes to the constraints throughout the mission’s
development require changes to the model. Detecting and
managing discrepancies between the models used to
generate plans and the constraints increase mission cost,
schedule, and risk. A discrepancy may indicate an error in
modeling that must be fixed prior to operations. If these
discrepancies are detected only during operations, they
require significant manual effort to fix. If undetected, this
can lead to a command sequence harming the spacecraft.
These errors are difficult to avoid because models are often
developed as disconnected abstractions of the system and
are difficult to check against the sources of the operational
constraints.

 This paper first describes space mission and activity
planning in the context of other mission operations system
elements. We use a sample activity description to show
how an activity’s pieces are constructed in a declarative
domain model from the various information sources. We
then challenge the community to address the complexity in
the context of a proposed Interactive Model Development
Environment (IMDE) that simplifies the construction,
validation, and maintenance of automated planning
systems. The latter half of the paper describes a proposed
Figure 1. How the Mission Planning System interacts with
the Mission Operations System.

IMDE from a functional and architectural perspective. We
describe both current and near-term technologies that can
be used to build such an IMDE. The survey of
technologies to aid mission planning begins with those in
use or imminently available. The survey concludes by
outlining research that could produce valuable mission
planning technologies.

The Mission Planning Process

A mission’s planning systems reside in a context of
mission planning processes. In particular, constraints are
central to mission planning systems, and many of these
constraints come from the mission operations system.

 Mission Operations System
The mission operations system (MOS) is the integrated
system of people, procedures, hardware, and software that
executes space missions (Carraway et al. 1999); recent
examples are described in (Garcia et al. 2009) and
(Tompkins et al. 2010). The MOS has several planning
functions. Mission planning decides how and when the
spacecraft and subsystems will act. Activity planning (or,
sometimes, sequencing) is creating or enabling specific
command sequences, either onboard the spacecraft or in a
ground station. Attitude determination and flight dynamics
planning (which are typically distinct from mission and
activity planning) determine where the spacecraft is and
where it maneuvers. Communications planning (another
distinct discipline) determines who to communicate with
and when. Communications planning critically depends on
flight design and the availability of communications assets.
Mobile surface missions like the Mars Exploration Rovers
include a planning system for surface operations (Ko et al.,
2004; Yen et al., 2005). Science targets, science
instrument or payload constraints, and preferences for
science payloads and instruments are typically input to
mission and activity planning. Attitude and flight
dynamics, communications, surface operations, and
science planning provide input to mission and activity
planning, but can also be constrained by them.
 Before commanding the spacecraft, mission operators
typically transform plans into sequences that simulators
and other tools validate (Ko et al., 2004). Finding
discrepancies in this process affects cost, schedule, and
risk.

Configuring the Mission Planning System
Configuring the mission planning system involves
identifying planning problems, methods to solve those
problems, and ways to communicate sequences derived
from the plan to the command and telemetry system (for
uplink to the spacecraft or execution on the ground). We
focus on the first of these issues: describing planning
problems. Model-based planning experts know the ‘right
way’ is to build a declarative planning model. However,
the sources of space mission constraints present challenges
to model building. Figure 1 illustrates a mission’s
interacting operations and planning systems. The purpose
of this view is to explain how MOS components interact
during the mission and how they influence the mission

planning system’s design. The remainder of this section
details the sources of Mission Planning System constraints.
Flight Rules.
Flight rules and other operational constraint products
document constraints and best practices for system
operations to ensure mission safety and mission success
(Barreiro et al., 2010). Instrument teams, spacecraft
manufacturers, and sometimes the mission operations team
create these documents. These rules provide essential
planning system input, but are typically stored as human-
readable (office) documents. Over time, missions have
evolved a set format for these rules. A typical flight rule
(below) shows features that are common in operational
constraints: the rule is broken up into discrete parts, the
action maps to fine-grained commands in multiple ways;
the rule’s criticality indicates it could be waived; the action
duration is explicit; and the mission phase dependency
demonstrates rules that only apply in certain contexts.
Instrument Rule 1
Rule: To power down, close the cover (Inst-Close-A or
Inst-Close-B), do not issue any further CMDs, wait at least
35 seconds, and then issue the power down CMD (PDU-1-
Power-Down-Inst or PDU-Power-Down-Inst).
Rationale: When not in use, the cover must be closed for
protection from Sun. Instrument needs to be powered
during the 35 seconds it takes to close cover.
Criticality: Category B
Mission Phase Dependency: Pre-launch, Cruise, Orbit
Commands Affected: Inst-Close-A, Inst-Close-B, PDU-
1-Power-Down-Inst or PDU-Power-Down-Inst
Cognizant Individual: Instrument Operations Contact
Notes: If the cover-close command is issued when the
cover is closed, the cover remains closed, and the
command is rejected. Once the closure procedure is started,
it is not possible to interrupt it.
Sequences.
Sequences are lists of fine-grained spacecraft commands.
Operators command the spacecraft by executing sequences
on the ground, by sending them to the spacecraft for
immediate execution, or by storing them onboard the
spacecraft to await a later event or command trigger.
Simulation is used to determine sequences’ time and other
resource constraints. The exact simulation used depends on
the sequence’s origin. For instance, instrument teams may
simulate their instruments (Tompkins et al. 2010). A
spacecraft manufacturer or mission operations team also
may build a simulator (Yen et al., 2005). Often,
simulations are used solely to check sequences against
flight rules (Ko et al., 2004).
Orbit Design and Communications.
Flight design may simulate orbits using a commercial
product like Satellite Toolkit (Tompkins et al. 2010).
Orbits provide key information for mission planning

systems. Examples include day / night times, sun angles,
and the relative locations of asteroids, comets, and
communications assets.

When Constraints Change
Constraints can change greatly before a mission. Mission
planning systems must accommodate these changes and be
validated at low cost (Carraway et al. 1999). For example,
target changes (as happened on LCROSS (Tompkins et al.
2010)) may require orbit changes, which can ripple further
through the planning systems. Changes in communication
coverage can cascade in a similar manner. While these
changes may appear to be ‘mere’ changes in plans, if
communication windows shrink, rules or constraints
governing communication coverage times may need to
change as well.
 Changes to vehicle configuration (specific equipment,
interconnection or equipment location, or equipment
performance characterization) can also cause changes in
mission planning constraints. Examples include new flight
rules, science instrument sequence changes, changes in
maneuvers, or new power or thermal limits (Tompkins et
al. 2010).
 As mission planning systems mature, planners often find
satisfying the constraints is too difficult. For example,
science teams and spacecraft manufacturers can provide
overly conservative constraints early in mission
development. On examination, analysts may determine the
constraints can be relaxed without compromising safety or
science.

The Challenges of Configuration
Space mission planning has benefited from the use of
model-based planners. However, there is a long-standing,
fundamental problem in applying automated planning to
physical systems. This difficulty stems from developing
system models that are disconnected from the system
(which lead to inaccuracy) and from modeling
representation language limitations (which add to
complexity). In order to make this concrete, consider the
difficulty of representation of a relatively simple spacecraft
activity: changing attitude.

Assumptions
We will illustrate the difficulty of modeling for space
mission activity planning using the following assumptions:

There is a spacecraft command and data dictionary. For
simplicity, this section assumes the data dictionary
includes orbit and attitude information.
The simulator input includes a list of time-tagged
commands from the command dictionary.
The simulator runs deterministically.

The simulator reports any errors (undesirable behavior);
The system (spacecraft) and simulator are defect-free.
The simulator is a black box (we can neither change nor
inspect its code and models)
The simulator outputs time-tagged samples of values of
specific data from the data dictionary.
Formal flight rules define mission constraints that are
verifiable with the simulator output.
A declarative modeling language configures the activity
planning system, e.g. PDDL (Fox & Long, 2003).
Every plan that the planner sends to the simulator is
consistent with the planner’s model.
A plan action corresponds to a list of time-tagged
commands from the command dictionary.
The planner is sound but not necessarily complete.

An Example
(:durative-action slew
 :parameters (?from – attitude
 ?to - attitude)
 :duration (= ?duration 5)
 :condition
 (and
 (at start (pointing ?from))
 (at start (cpu-on))
 (over all (cpu-on))
 (at start (>= (sunangle) 20.0))
 (over all (>= (sunangle) 20.0))
 (at start (communicating))
 (over all (communicating))
 (at start (>= (batterycharge) 2.0)))
 :effect
 (and
 (at start (decrease (batterycharge)2.0))
 (at start (not (pointing ?from)))
 (at end (pointing ?to))))

The PDDL above configures the mission planning system
for a spacecraft attitude change activity. This activity
model is more abstract than simulators of the spacecraft's
command set, lighting conditions (a function of the orbit),
dynamics of slewing the spacecraft, communication asset
locations, spacecraft power utilization, and battery
performance. Typically, extracting knowledge to
configure the planning system is manual, inefficient and
error-prone. Questions often include:

How do planner model attitudes relate to real spacecraft
operations’ continuous attitudes? For example, a deep
spacecraft with camera directional sensors may require a
discrete set of target attitudes only. Often, there are
designated pointing attitudes. Examples are to Earth (for
deep-space), Earth-nadir (for Earth orbits), and sets of
navigation guide stars.
How does the planner estimate battery discharge?
Evaluating the spacecraft components is essential.
Planners must account for all components that are active
during the slew operation, which may require consulting
the simulation.

What drives slew duration? One factor is angular slew
distance. Another factor is the attitude control system
(reaction wheels, thrusters, torque rods). The spacecraft
manufacturer characterizes that system in performance
tests. A third factor is spacecraft sequence (see below).
Flight rules may govern slew sequences, and simulation
may characterize the sequence duration and resource use.
How does the planner model communication coverage?
Coverage is a function of the spacecraft orbit,
communication assets, spacecraft antenna type and
configuration, many of which simulators analyze pre-
flight. Flight rules could require spacecraft
communications because ground systems must monitor
spacecraft activities or command the slews.
How does the abstract slew correspond to one or more
sequences of spacecraft commands? Some spacecraft
decompose attitude changes into a sequence of rotations
in each major body frame (pitch, roll, yaw). ‘Arbitrary’
slewing is possible, but limiting slews to one axis at a
time is simpler and hence safer. Mission planning can’t
easily check some flight rules (e.g. voltage limits in the
power system) and are checked by simulation. It is
especially important to check for unexpected interactions
between concurrent sequences.

Figure 2: Hypothetical IMDE architecture.

Before flight, the orbit, attitude, engineering subsystem
specification and simulations can change frequently.
These changes require reconfiguring the activity planner
efficiently. For example:

New targets or navigation aids require updating the set
of discrete attitudes.
Analysis or changes in sequences can cause a change in
attitude control system performance, leading to activity
changes.
Any power-using subsystem that changes performance
(e.g., attitude control system or communication) will
change the power consumption. If planning determines

mission objectives can’t be met, a need to slew faster
could also increase power consumption
Changing orbit, communication coverage plan, or
antenna configuration may change the activity.
Changing flight software, or the uses of major spacecraft
operating modes, might require changing the commands
that affect attitude

Clearly, configuring the mission planning system with
even the one activity described here requires much effort.
The effort includes extracting knowledge from the flight
rules, command and data dictionaries, and simulation APIs
and output. Currently, those data (and input from the
mission operations system orbit, trajectory and
communications elements) often reside in documents that
are difficult to extract planning knowledge from.

Interactive Model Development Environments for
Space Mission Operations Applications

The activity planning system’s main goal is to verify
activity plans against the relevant constraints. However,
validating the planning system also requires validating the
constraints themselves.
 Academic planning languages and algorithms originally
used Boolean state variables only. Such variables are
generally impractical for representing time, location, and
other numerical states. Planning languages are more
expressive now (Howey et al. 2004, Fox and Long, 2003)
but their limitations still force inelegant workarounds that
make system models complex. Models strongly influence
the performance of automated planning, so revising the
model to improve performance can increase the complexity
further. This complexity can combine with human error
and lack of information about the modeled system’s
behavior to produce inconsistencies (with the model and
the modeled system). Finding the inconsistencies can
require significant work, and fixing these inconsistencies
can require significant changes.
 To explain the challenge problem intuitively, this paper
describes how a hypothetical Integrated Model
Development Environment (IMDE) could integrate
planning and simulation. This integration could simplify
validation of models within the development cycle, thereby
making modeling for space mission planning more
efficient. A more specific goal is integrating a planner and
simulator to help automate model development and
validation. The goal is not conventional model checking,
where the model by itself is checked for potential
problems. Instead, the model is being checked for
consistency with the simulator.
 The hypothetical IMDE design features and architecture
are described in the next section. It then describes two use
cases: developing a mission planning domain using

simulation and operating constraint specifications, and
checking the specification for errors.

IMDE design features
The hypothetical IMDE differs from programming
language IDEs. It aids some tasks that are specializations
of software development tasks. The IMDE also includes
features for validating a planning domain model against a
simulation or operations constraints.
 The simulation specification (which is synonymous with
the command and data dictionary) gives the domain
modeler a place to start. In a perfect world, the domain
model would map 1-1 to the dictionary. More often,
though, the mission planner is an abstraction of lower level
commands. Also, different types of mismatches between
the planner model and source information indicate
different types of links between planner, simulator, and
constraints.
 Figure 2 shows the system architecture of a hypothetical
IMDE. The Model Editor provides traditional IDE
functions. The Simulation Browser lets users access the
command and data dictionary while creating models. The
Abstraction Editor enables describing how plan model
building blocks (objects, states, timelines, actions,
constraints) relate to the simulation specification. The
Abstraction and Refinement Engines integrate the planner
and simulator. The Refinement Engine transforms a plan
into simulator input. The Abstraction Engine transforms
simulator output into an ‘as-executed plan’ to be compared
with the original plan. The Validator compares the two
plans and assesses discrepancies. The Validator also takes
as input any constraints not explicitly checked in the
simulator (e.g., flight rules) that are part of the planning
model. The Plan Viewer (not shown) visualizes (e.g. in a
Gantt chart) the plans generated for a planning problem, as
well as simulator output that should correspond to the
plans. The Plan Viewer (and/or a separate Error Viewer)
shows mismatches between the plan and simulation (as
described earlier). Finally, the Fixer analyzes mismatches
between the plan and simulation output and identifies
model and abstraction elements for possible change.
(Checking simulation output against flight rules is not
shown but also a useful function.) Since the simulator is a
black box, there is no guarantee that affecting the
suggested repairs will fix all problems.

IMDE use cases
The hypothetical IMDE’s user first creates a model. Doing
so requires deciding on the objects types and sets, fluents,
actions, and action conditions and effects (and, for
modeling languages that support them, timelines). In this
process, the user can access the simulation interface as well

as output produced directly from the simulation. A typical
workflow for this phase of modeling is as follows:
1. User opens new model
2. User browses simulation interface
3. User either:

a. Copies variables to the model (e.g. sunangle)
b. Abstracts variables in the model (e.g. an x,y,z

attitude as a member of the planner object
attitude)

c. Copies one command to model as an action (e.g.
turn on CPU)

d. Abstracts a command sequence to model an action
(e.g. command sequence to slew spacecraft)

4. Repeat
When the user performs these operations, they can
document the relationship between the planning model and
elements of the simulation using the Abstraction Editor, as
shown in Figure 2. This provides traceability so that
elements of the model are ‘grounded’ in the simulation,
and as we will see below, provides a means of detecting
problems when things go wrong.
 Adding a new variable or timeline to a domain model
requires informing the Plan Viewer. The Plan Viewer also
must maintain a consistent view of the plans. It is
impractical to regenerate all of the plans from first
principles every time the underlying models change. So,
an established policy must address stored plans generated
using older models. A typical plan repair strategy might
work well for ‘scheduling’ errors in older plans. But it
may take a lot of work to indicate what must be fixed when
an older plan’s timelines, semantics, and state and object
names change.
 The hypothetical IMDE user next compares planner-
generated plans and predictions to corresponding simulator
output. This phase could follow the following workflow:
1. User edits initial state in planner
2. IMDE generates and tests possible plans

a. Translates planner initial state into simulator input
b. Translates the plan into simulator commands
c. Runs simulation
d. Translates simulator output to an ‘as-executed’ plan
e. Checks for errors against constraints
f. Checks for discrepancies between planner’s plan

and ‘as-executed’ plan
3. User views plan, ‘as-executed’ plan, and errors
4. IMDE suggests model changes based on test results
5. Repeat

Translating plan information as abstraction and
refinement
The abstractions captured during initial plan authoring are
heavily used in the previous workflow. For example, one
slew(?from,?to) action in the plan may translate into

three ordered subsequences in the simulator that change
different spacecraft attitude dimensions. Another
abstraction type specifies how state variables in the
planning model relate to those in the simulator output. One
abstraction could define the mapping from spacecraft
environment to attitudes: {px,py,pz} p
domain(attitude). Another abstraction could map
the at(?to) predicate to indicate whether the simulated
attitude of the spacecraft is near a target attitude.
Spacecraft attitude control systems often have dead-band
modes. Different modes trade pointing accuracy for
propellant, power, and computer usage. Different targets
(e.g., communications and science) require different
pointing accuracies. So, the mapping from simulator
output {x,y,z} to the desired attitude p={px,py,pz} would
be ||{x,y,z},{px,py,px}|| < d at(?to=p)1. In general,
an abstraction could be any function of a set of time-
varying variables to a time-varying variable.
 The Refinement Engine translates initial state
information using these abstractions in Steps 2a and b of
the process. The abstractions captured by the user are
‘reversed’ in order to do so. For example, translating a
plan’s slew(?from,?to) action into simulator
commands would translate the symbol ?to to the
corresponding simulator object’s coordinates.
 The Abstraction Engine translates simulation results into
‘as-executed’ information using the abstractions. There are
two plan model references: one for generating the
prospective plan and another for comparing the planning
constraints to simulation results that are transformed into
the ‘as-executed plan’. The planner then compares the ‘as-
executed’ to the original plan predictions, possibly
revealing numerous errors. The next section explains this
process.

Identifying modeling errors
 Unexpected simulator behavior can indicate modeling
errors. For instance, commands may fail due to gaps in the
mapping from action to command. To illustrate,
slew(?from,?to) could fail because its decomposition
lacks necessary power-up commands, because commands
are improperly ordered, or because it occurs in an
unexpected and incompatible system configuration.
Checks on the simulation output (e.g. those assessing flight
rule violations) can also detect these problems.
 Modeling errors can also result in simulator output
having constraint violations that the original plan lacks.
For example, in testing the slew(?from,?to) action,
suppose that a violation occurs because the simulation
achieves at(?to) too late. The modeling error may be

1 Strictly speaking, evaluating the at(?position) abstraction on simulation
ouput requires first evaluating the ?position abstraction.

that the spacecraft turns slower than expected along one
axis.
 In another error detectable at this stage, the power
system simulator predictions of power consumption may
not match the planner’s power consumption model. A
planning constraint, such as a minimum battery state of
charge, might appear violated when comparing the
simulation and the planner model. Yet, unlike in the
previous example, no action precondition or effect fails.
 Finally, a host of errors may arise in checks of
simulation output against flight rules. For example, power
bus voltage limits, dynamics constraints, structural load
limits and other properties may be specified in flight rules
or other engineering documentation, but must be checked
against the simulation output variables describing those
quantities as a function of the plan.
 Discrepancies between the planner and simulator state
value predictions need not be modeling problems.
Defining the planning states as abstractions of the
simulator’s states could naturally lose information. For
example, the planning model could represent battery
depletion as instantaneous while the simulation represents
depletion as gradual. Discrepancies will probably manifest
between the planned and simulated battery levels. But,
planning the battery levels conservatively could avert
simulation failures. The user may choose to omit specific
discrepancies from reporting (as with waiving constraint
violations in mixed initiative planning systems – see
Aghveli et al. 2007). However, the discrepancy might
indicate an efficiency improvement opportunity: a more
detailed battery depletion model could enable scheduling
more activities.
 An alternate workflow can check a plan against pre-
existing simulator output. This method needs not translate
planner initial states and plans to generate simulation runs.
Instead, the method compares a plan’s commands and
predicted state with corresponding, pre-existing simulation
output. In this case, errors may result from different
commands or orderings in the plan and the simulation.

Generating plans to validate pieces of the model
Abstractions generally lead to loss of information. There
may be many possible valid simulations that can be
abstracted to the same plan. The reason for generating
different plans to test is to validate that the model will
work for all situations. Validating the model requires
validating all possible plans that can be constructed from
the model. There may be a manageable number of
simulations that is enough to validate a single part of the
model. For example, if the user wants to ensure that the
at(?to) effect is always satisfied at the end of
slew(?from,?to) then a complete space of plans to
test would combine all possible attitudes (slew from each

attitude to each other attitude) and all possible initial states
for slew(?from,?to). It is possible to generate all of
these plans with special purpose code, but the planner itself
may be leveraged to accomplish this. Instead of generating
all combinations, incorporate this parameterization into a
planning problem: what initial state and ordering of
instantiations of slew(?from,?to) will achieve
at(?to) at the end? The set of valid solutions to this
planning problem is the test suite. Unfortunately, this kind
of test coverage problem is known to be quite difficult and,
thus, part of the challenge.
 A single plan may lead to many (possibly infinite)
sequences to simulate. This situation is apparent from the
first flight rule described, in which several command
sequences could be used to power down an instrument.
Again, it may be possible to cleverly scope the validation
to reduce the number of sequences tested.

Suggesting changes to the model
When the IMDE runs a batch of plans through the
simulator, some may result in simulator errors and some
may result in planning constraint errors. These indicate
that there are modeling errors, but the actual mistake made
by the modeler may not be obvious, especially if the
relevant system variables are not sampled very often or not
part of the simulator output at all. The IMDE can suggest
methods to fix inconsistencies between the plan test cases
and corresponding simulator output. For example, suppose
a spacecraft failed to reach its destination attitude
whenever the z-axis angle change exceeded 120 degrees.
This condition could be added to the planning model.
IMDE suggestions could include changing constraints on
an action, adding state variables, or creating new actions,
as described by the Fixer component in Figure 2.
 For example, suppose the slew(?from, ?to) action
never achieved at(?to), but the simulation output
indicates that the spacecraft never stopped moving and in
fact oscillated around a deadband (as described earlier). In
this case, there was never a value reported in the results
that the spacecraft attitude was in the vicinity of ?to
because the deadband mode was larger than the modeler
expected. The fix may not actually be to the model but to
how simulator results are interpreted in the abstraction (the
modeler chose the wrong deadband to map attitudes to the
at(?to)value), or the action abstraction was wrong (the
attitude controller invoked was the wrong one for the
chosen attitude and the data abstraction was correct), or
that all the abstractions are correct but the modeler chose
the wrong action (i.e. there are multiple slew actions).
 Can we automatically identify where the problem is?
We could try to classify the conditions under which the
errors occur. If we look at this as a machine learning
problem with the simulations of plans as the sample set, we

could try and learn a function of plan and simulation output
to whether an error was found. Part of that function may
be that whenever the rotation around the z-axis is greater
than 120 degrees, |deltaZ| > 120, slew fails. A direct
fix to the model would be to bring deltaZ into the
planning model and to add a precondition to the drive
action that |deltaZ| <= 120. The user could accept
this fix and replace the deltaZ inequality with a Boolean
longSlew abstraction in order to avoid numerical states.
Note this approach works regardless of whether there are
simulation errors, post-simulation checks to determine
flight rule violations, or discrepancies between the
simulation and the plan. The learning problem is difficult
because simulation output may vary in size for the same
plan, and because it may require learning complex
functions of the simulation data and abstractions.

Technology Foundations
While the ultimate vision of the IMDE has yet to be
achieved, many component technologies have been built.
In this section we describe some of these technologies as
well as research activities that enable this goal.
 To understand better how the proposed automated model
development and validation may be used, consider the
validation of the CASPER automated planning system for
onboard commanding of NASA’s EO-1 spacecraft. This
validation process involved tabletop model reviews with
EO-1 engineers and operators, safety reviews to elicit
potential hazards, and automated tests stochastically
generated as perturbations to nominal scenarios and
executed on simulation platforms of varying fidelity where
spacecraft, operations, and safety constraints were checked
(Cichy et al., 2004). The automation proposed here may
not be able to eliminate any of these steps. However, tests
could be generated and executed for each edit to the model
to identify, avoid, and fix modeling errors. This testing
could make the reviews simpler since plans have already
been validated for a documented set of constraints by the
simulators. The reviews could focus on what rules have
been checked instead of how they are being modeled.
 The itSimple tool (Vaquero et al., 2007) is a plan
domain modeling environment very similar to the proposed
IMDE. Users of itSimple can build ‘static’ models of
objects, actors and relationships between them in a
specialization of UML, and ‘dynamic’ models of how
states of the objects are allowed to change using Petri Nets
(an encoding of state charts); the Petri Net model acts as a
simulation. The resulting models are automatically
translated by itSimple to PDDL, after which the users can
continue refining the resulting models. This ensures
commonality between the primitives used in the simulation
and in planning, and automates the translation from well-

known engineering formalisms used in the software world
to declarative planning models. In order to be used for
space mission planning, the itSimple approach must be
able to create planning models with time, resources,
complex numerical state variables, and complex resource
constraints; the simple Petrie Net formalism is not
expressive enough to do this. Furthermore, the assumption
that the simulation is captured by the plan domain modeler
does not always match the space mission domain, where
simulations are often black-box (although the approach can
be quite valuable when a white-box simulation serves as
the root of a planning model.)
 The Procedure Integrated Development Environment
(PRIDE) (Izygon et al., 2008) is a procedure authoring
technology prototype that can be used to create procedures
for execution by flight controllers and crew. PRIDE
presents procedure authors with a command and telemetry
database characterized in XTCE (Simon et al., 2004); users
can drag commands and telemetry references into a plan
directly from the command and telemetry database GUI.
PRIDE provides access to either state-chart simulations or
high-fidelity simulations the procedure writer can use to
manually check procedures for correctness. Procedures
can also be automatically verified by means of translation
to Java and the use of model checking software (Brat et al.,
2008). The use cases for creating procedures are quite
similar to the assumptions made here. However,
procedures use the command and telemetry dictionary
directly, with no abstraction, and ‘models’ are limited to
including verify steps for post-conditions that can be
checked by the procedure writer. There is also no notion
of automatically proposing fixes to plans.
 The Constraint and Flight Rule Management System
(ConFRM) (Barreiro et al. 2010) is a flight rule authoring
environment. ConFRM provides features to create and
maintain links between related operational constraints,
between constraints and source data such as simulations or
engineering analysis documentation, as well as numerous
IDE-like features to reduce the effort in creating and
authoring operational constraints. Like PRIDE, ConFRM is
intended to allow mission operators to create flight rules
and operating constraints while browsing the command
and telemetry specification of the spacecraft. ConFRM
prototypes included the ability to export declarative
constraints to tools such as a planning system. ConFRM’s
link management functionality is similar to capability
needed by the proposed IMDE. Providing tools like
ConFRM to the organizations providing source data to the
planning system can further reduce the effort in ensuring
flight rules and related constraints are created for easy
integration with the planning system.
 The Data Abstraction Architecture (DAA) (Bell et al.,
2010) is designed to address the problem of transforming
spacecraft or space system telemetry into useful

information for operators (be they flight controllers or
crew). The system allows system operators to write
common data transformations using a GUI; the
transformations are then executed by an engine that accepts
telemetry as input, and produces more intuitive information
as output. The DAA framework is well suited to specify a
number of abstractions needed for transforming simulation
variables and values into plan domain model variables and
values; however, it would need to be extended to capture
transformations of commands to plan domain model
actions.
 VAL takes steps toward the Fixer IMDE element by
validating that a specific plan is indeed a solution to a
planning problem that may be specified with continuous
effects, including limited forms of time-dependent change
on numerical state variables (Howey, et al., 2004). VAL
can also advise modelers how to fix a plan. The goal
explored here is how to validate that all plans execute as
intended and suggest fixes to the model, not just the plan.
Furthermore, the approach in VAL would have to act on
the ‘as-executed’ plans abstracted from the simulator.
 The LOCM system (Cresswell et al. 2009) learns
planning domain models from sets of example plans. Its
distinguishing feature is that the domain models are
learned without any observation of the states in the plan or
about predicates used to describe them. This works be-
cause of some restrictive assumptions about the form of the
model describing the domain. In particular, the objects are
grouped into sorts, and the behavior available to objects of
any given sort is described by a single parameterized state
machine. LOCM is the latest in a number of plan domain
learning systems that could be employed to abstract black-
box simulations into domain models as part of the Fixer in
our proposed IMDE. However, doing so requires plans to
begin with, and hence requires interacting with simulators
to create those plans. Furthermore, learning directly on the
simulation representation will not abstract the lower level
commands, and will also not account for constraints
manifested in flight rules. While learning could be the
mechanism to determine how to design and implement the
Fixer as proposed in the IMDE, it is unclear precisely how
to approach this aspect of the problem.
 Bonasso et al. (Bonasso et al. 2010) describe a means
of eliciting plan domain information from a human expert.
They assume a domain ontology (things and their
relationships) is available; they then analyzed common
goals in an International Space Station Extra Vehicular
Activity (EVA) domain, and constructed an interactive
questionnaire that users could fill out in order to construct
an action description that achieves a goal. The structure of
the questionnaire conforms to the structure of the action
modeling language but does not force users to create
descriptions in an unfamiliar format. Such an approach can
be important as an adjunct to building flight rule

documents that drive plan domain modeling. Important
gaps still to be resolved include deriving the ontology, and
whether and how the system can be used to revise
previously created actions. Apropos to the validation
issues described, the approach allows users to distinguish
the purpose of an action (or constraints on its success) from
side effects that are known to take place and may be of
interest to others.

Challenges in relaxing the assumptions
The usefulness of the described IMDE may still be
insufficient because of some limiting assumptions we
made. We describe those we believe are important and
present additional challenges.
 It is possible that an action may correspond to multiple
commands, a loop, or any arbitrary function generating
commands. As long as this function is a legitimate
simulator input, then this is not a difficult problem.
 Many systems have uncertain behavior, for example,
stemming from attitude and temperature control. If the
simulation testbed can be invoked in a way that explores
different outcomes, then a single plan now corresponds to
multiple (possibly infinite) test cases for which the model
should be validated. This presents an additional difficulty
in determining a tractable number of test cases sufficient
for validating the model. It also presents a problem of how
to model the activity correctly; if the action duration varies
between 30 and 40 seconds, what is the best value to use?
 In addition, the spacecraft may be able to execute
sequences conditioned on the perceived system state. This
requires simulations that incorporate all possible perceived
states that could influence the plan outcomes.
 We have discussed some basic examples of modeling
errors on preconditions and effects. For expressive
language elements such as activity decomposition (as
opposed to the abstractions mapping plan actions to
sequences of simulator commands) and parameter
dependency functions, how can errors and fixes be
automatically identified?
 Relaxing other assumptions may not pose difficult
research challenges but can change the nature of the
system capability. For example, if the simulator or
spacecraft does have defects (which we must always
assume is true), then discrepancies that are inconsistencies
between planned and executed behavior may now (in
addition to modeling errors) also be indications of those
defects. So the system now can identify simulator and
system defects and help validate them against the planner.
Thus, the IMDE may more generally be designed for
validating multiple systems against each other. This
validation is especially important for interactions between
autonomous spacecraft subsystems (such as an onboard
planner or a guidance, navigation, and control system).

 Another assumption was that the simulator is a black
box. One option is to treat the effects of an action as
properties that are input to a model checker, which is used
to directly analyze the simulation model. The System-
Level Autonomy Trust Enabler (SLATE) validates a
complete model of the system and its operation,
incorporating device, control, execution, and planning
models (Boddy et al., 2008). The conventional approach
of building a model only at an abstract level requires much
extensive testing of different scenarios and could only be
guaranteed to work if all possible scenarios are tested.
SLATE only requires testing of individual behaviors
whose performance envelopes are incorporated into the
model. Thus, since the model of the system is complete, it
can be used to prove system-level properties similar to
model checking. Another strategy for validating plan
abstractions (in particular, those of hierarchical plans) is to
summarize the potential constraints and effects of the
potential decompositions of each abstract action in the
model (Clement et al., 2007). A planner can use this
summary information to create a plan whose actions are
detailed to different levels necessary to conclude that all
further refinements of the plan are either valid or invalid.
Like SLATE, summary information validates higher level
actions composed of more detailed validated actions.
Summary information differs in that abstract actions retain
choices of refinement for flexibility of execution, while
abstract actions in SLATE are robust to uncertain system
behavior. Instead of validation through testing like
SLATE, summary information relies on an accurate, fully
detailed model and is, thus, valuable for validating an
action model based on its decomposition into a white box
simulation model that can be summarized. For example,
the slew action's effect at(?to) would be validated if
its summarized effects included must at(?to),
meaning that at(?to) is an effect of all possible ways to
execute the slew.
 A more aggressive approach is to automatically abstract
the simulation model to create the planner model, i.e.
augment the approach of itSimple (Vaquero et al. 2007) to
translate more expressive models to declarative planning
languages. Automating such translations requires a deep
understanding of the simulation modeling language, and
may not be feasible for all simulation approaches.

Conclusion
The maturation of model-based planning provides an
opportunity to improve the state of the art in space mission
planning. However, doing so will require planning models
to represent complex constraints derived from many
sources of information, and for spacecraft engineers to be
able to build and validate these models. We have

described the challenges in doing so, and described the
Interactive Model Development Environment as a means
of reducing up-front errors as well as providing numerous
tools to catch and repair errors in building models. While
the technologies described in the previous section support
features of the described IMDE, there remain significant
research challenges to achieve the overall vision.

How can a complete but tractable space of test cases be
identified for activity model validation?
Can a single test case contribute to the validation of
multiple model elements?
How can errors in different modeling language features,
command refinement, and data abstraction be clearly
identified based on simulation output of these tests?
What are the features of a learning problem for

classifying an error?
How can suggested fixes be generated for these errors?

Acknowledgements
The authors would like to thank members of the LCROSS
and MER mission team for their insights into planning and
operations for those missions. Some of the research
described in this paper was performed by the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government,
or the Jet Propulsion Laboratory.

References
Boddy, M., Carpenter, T., Shackleton, H., Nelson, K. System-
Level Autonomy Trust Enabler (SLATE), In Proc. of the U.S. Air
Force T&E Days, AIAA, Los Angeles, CA, Feb, 2008.
Cichy, B., Chien, S., Schaffer, S., Tran, D., Rabideau, G.,
Sherwood, R. Validating the Autonomous EO-1 Science Agent
International Workshop on Planning and Scheduling for Space
(IWPSS 2004). Darmstadt, Germany, June 2004.
Howey, R. and Long, D. and Fox, M. VAL: automatic plan
validation, continuous effects and mixed initiative planning using
PDDL. In: 16th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2004), 15-17, Nov 2004.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2012.
Acquiring planning domain models using LOCM. Knowledge
Engineering Review, to appear.
Bonasso, P. and Boddy, M. Eliciting Planning Information from
Subject Matter Experts. Proceeding of the Workshop on
Knowledge Engineering for Planning and Scheduling, 2010.
Tompkins, P.D., Hunt, R., D’Ortenzio, M., Strong, J., Galal, K.,
Bresina, J., Foreman, D., Barber, R., Munger, J., and Drucker, E.
Flight Operations for the LCROSS Lunar Impactor Mission.
Proceedings of AIAA Space (SpaceOps) 2010.

Ko, A., Maldague, P., Page, D., Bixler, J., Lever, S., and Cheung,
K. M. Design and Architecture of Planning and Sequence System
for Mars Exploration Rover (MER) Operations. Proceedings of
the AIAA Space Conference 2004.
Yen, J., Cooper, B., Hartman, F., Maxwell, S., Wright, J., Leger,
C. Physical Based Simulation for Mars Exploration Rover
Tactical Sequencing. Proceedings of the IEEE Conference on
Space Mission Challenges, 2005.
Reddy, S., Frank, J., Iatauro, M., Boyce, M., Kurklu, E., Ai
Chang, M., Jonsson, A. Planning Solar Array Operations on the
International Space Station. Special Issue on Applications of
Automated Planning, ACM Transactions on Intelligent Systems
and Technology, 2011 (in press).
Bresina, J., Jónsson, A., Morris, P., and Rajan, K. 2005. Activity
planning for the Mars Exploration Rovers. In Proceedings of the
15th International Conference on Automated Planning and
Scheduling, Monterey CA, USA, June 5-10, 2005, S. Biundo, K.
Myers, K. Rajan, Eds. AAAI, Menlo Park, CA., USA 40-49.
Vaquero, T., Romero, V., Sette, F., Tonidandel, F., Reinaldo
Silva, J. ItSimple 2.0: An Integrated Tool for Designing Planning
Domains. Proceedings of the Workshop on Knowledge
Engineering for Planning and Scheduling, 2007.
J. Barreiro, J. Chachere, J. Frank, C. Bertels and A. Crocker.
Constraint and Flight Rule Management for Space Mission
Operations. International Symposium on Artificial Intelligence,
Robotics, and Automation in Space, 2010.
Carraway, J., Squibb, G., Larson, W. Mission Operations. In
Wetz, J. and Larsen, W. Space Mission Analysis and Design (3d
edition). Microcosm Press, El Segundo, CA 1999, p. 587-620.
Garcia G., Barnoy, A., Beech, T., Saylor, R., Cosgrove, J., Ritter,
S. Mission Planning and Scheduling for NASA’s Lunar
Reconnaisance Orbiter. Proceedings of the Ground Systems
Automation workshop, 2009.
Izygon, M., Kortenkamp, D., Molin, A., “A Procedure Integrated
Development Environment for Future Spacecraft and Habitats,”
Space Technology and Applications International Forum,
Albuquerque, NM, 2008.
Brat, G., Gheorghiu, M, , Giannakopoulou, D., “Verification of
Plans and Procedures,” IEEE Aerospace Conference, IEEE, Big
Sky, MT, 2008.
Scott Bell, David Kortenkamp, Jack Zaientz.A Data Abstraction
Architecture for Mission Operations. Proceedings of the
International Symposium on Artificial Intelligence Automation
Robotics in Space 2010.
Simon, G. Shaya, E. Rice, K. Cooper, S. Dunham, J.
Champion, J. “XTCE: A Standard XML-Schema for Describing
Mission Operations Databases,” IEEE Aerospace Conference,
IEEE, Big Sky, MT, 2004.
Aghevli, A., Bachmann, A., Bresina, J.L., Greene, J., Kanefsky,
R., Kurien, J.,McCurdy, M., Morris, P.H., Pyrzak, G., Ratterman,
C., Vera, A., Wragg. S., Planning Applications for Three Mars
Missions. Proceedings of the International Workshop on
Planning and Scheduling for Space. Baltimore, MD, 2007.
Fox, M. & Long, D. (2003), PDDL2.1: An extension of PDDL
for expressing temporal planning domains, Journal of Artif cial
Intelligence Research 20, 61–124.
Clement, B., Durfee, E., Barrett, A. Abstract Reasoning for
Planning and Coordination. Journal of Artificial Intelligence
Research, vol. 28, 453-515, 2007.

