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Abstract 
Mission planning is central to space mission operations, and 
has benefitted from advances in model-based planning 
software.  Constraints arise from many sources, including 
simulators and engineering specification documents, and 
ensuring that constraints are correctly represented in the 
planner is a challenge.  As mission constraints evolve, 
planning domain modelers need help with modeling 
constraints efficiently using the available source data, 
catching errors quickly, and correcting the model.  This 
paper describes the current state of the practice in designing 
model-based mission planning tools, the challenges facing 
model developers, and a proposed Interactive Model 
Development Environment (IMDE) to configure mission 
planning systems.  We describe current and future 
technology developments that can be integrated into an 
IMDE.

Introduction
Mission planning is central to space mission operations, 
and has benefitted from advanced in model-based planning 
software (Reddy et al. 2010, Bresina et al. 2005).  A 
principal obstacle to fielding model-based planning 
systems for space missions is the complexity of domain 
modeling. Space mission planning has diverse information 
sources such as engineering specification documents 
(Barreiro et al. 2010), communication coverage, 
simulations of spacecraft subsystems (Ko et al., 2004; Yen 
et al., 2005), and trajectory and attitude specifications. 
Building a domain model requires identifying these 
information sources, understanding them, and often 
representing formal abstractions of them.  
 Changes to the constraints throughout the mission’s 
development require changes to the model. Detecting and 
managing discrepancies between the models used to 
generate plans and the constraints increase mission cost, 
schedule, and risk. A discrepancy may indicate an error in 
modeling that must be fixed prior to operations. If these 
discrepancies are detected only during operations, they 
require significant manual effort to fix.  If undetected, this 
can lead to a command sequence harming the spacecraft. 
These errors are difficult to avoid because models are often 
developed as disconnected abstractions of the system and 
are difficult to check against the sources of the operational 
constraints.   

 This paper first describes space mission and activity 
planning in the context of other mission operations system 
elements.  We use a sample activity description to show 
how an activity’s pieces are constructed in a declarative 
domain model from the various information sources.  We 
then challenge the community to address the complexity in 
the context of a proposed Interactive Model Development 
Environment (IMDE) that simplifies the construction, 
validation, and maintenance of automated planning 
systems. The latter half of the paper describes a proposed 
Figure 1.  How the Mission Planning System interacts with 
the Mission Operations System. 

IMDE from a functional and architectural perspective.  We 
describe both current and near-term technologies that can 
be used to build such an IMDE.  The survey of 
technologies to aid mission planning begins with those in 
use or imminently available.  The survey concludes by 
outlining research that could produce valuable mission 
planning technologies. 



The Mission Planning Process 

A mission’s planning systems reside in a context of 
mission planning processes.  In particular, constraints are 
central to mission planning systems, and many of these 
constraints come from the mission operations system.  

  Mission Operations System 
The mission operations system (MOS) is the integrated 
system of people, procedures, hardware, and software that 
executes space missions (Carraway et al. 1999); recent 
examples are described in  (Garcia et al. 2009) and 
(Tompkins et al. 2010). The MOS has several planning 
functions. Mission planning decides how and when the 
spacecraft and subsystems will act.  Activity planning (or, 
sometimes, sequencing) is creating or enabling specific 
command sequences, either onboard the spacecraft or in a 
ground station.  Attitude determination and flight dynamics 
planning (which are typically distinct from mission and 
activity planning) determine where the spacecraft is and 
where it maneuvers.  Communications planning (another 
distinct discipline) determines who to communicate with 
and when.  Communications planning critically depends on 
flight design and the availability of communications assets.  
Mobile surface missions like the Mars Exploration Rovers 
include a planning system for surface operations (Ko et al., 
2004; Yen et al., 2005).  Science targets,  science 
instrument or payload constraints, and preferences for 
science payloads and instruments are typically input to 
mission and activity planning.  Attitude and flight 
dynamics, communications, surface operations, and 
science planning provide input to mission and activity 
planning, but can also be constrained by them.  
 Before commanding the spacecraft, mission operators 
typically transform plans into sequences that simulators 
and other tools validate (Ko et al., 2004).  Finding 
discrepancies in this process affects cost, schedule, and 
risk. 

Configuring the Mission Planning System 
Configuring the mission planning system involves 
identifying planning problems, methods to solve those 
problems, and ways to communicate sequences derived 
from the plan to the command and telemetry system (for 
uplink to the spacecraft or execution on the ground). We 
focus on the first of these issues: describing planning 
problems.  Model-based planning experts know the ‘right 
way’ is to build a declarative planning model.  However, 
the sources of space mission constraints present challenges 
to model building.  Figure 1 illustrates a mission’s 
interacting operations and planning systems. The purpose 
of this view is to explain how MOS components interact 
during the mission and how they influence the mission 

planning system’s design.  The remainder of this section 
details the sources of Mission Planning System constraints. 
Flight Rules. 
Flight rules and other operational constraint products 
document constraints and best practices for system 
operations to ensure mission safety and mission success 
(Barreiro et al., 2010).  Instrument teams, spacecraft 
manufacturers, and sometimes the mission operations team 
create these documents.  These rules provide essential 
planning system input, but are typically stored as human-
readable (office) documents.  Over time, missions have 
evolved a set format for these rules. A typical flight rule 
(below) shows features that are common in operational 
constraints: the rule is broken up into discrete parts, the 
action maps to fine-grained commands in multiple ways; 
the rule’s criticality indicates it could be waived; the action 
duration is explicit; and the mission phase dependency 
demonstrates rules that only apply in certain contexts. 
Instrument Rule 1
Rule: To power down, close the cover (Inst-Close-A or 
Inst-Close-B), do not issue any further CMDs, wait at least 
35 seconds, and then issue the power down CMD (PDU-1-
Power-Down-Inst or PDU-Power-Down-Inst). 
Rationale: When not in use, the cover must be closed for 
protection from Sun. Instrument needs to be powered 
during the 35 seconds it takes to close cover.  
Criticality: Category B 
Mission Phase Dependency:  Pre-launch, Cruise, Orbit 
Commands Affected: Inst-Close-A, Inst-Close-B, PDU-
1-Power-Down-Inst or PDU-Power-Down-Inst 
Cognizant Individual: Instrument Operations Contact 
Notes: If the cover-close command is issued when the 
cover is closed, the cover remains closed, and the 
command is rejected. Once the closure procedure is started, 
it is not possible to interrupt it.  
Sequences. 
Sequences are lists of fine-grained spacecraft commands.  
Operators command the spacecraft by executing sequences 
on the ground, by sending them to the spacecraft for 
immediate execution, or by storing them onboard the 
spacecraft to await a later event or command trigger. 
Simulation is used to determine sequences’ time and other 
resource constraints. The exact simulation used depends on 
the sequence’s origin.  For instance, instrument teams may 
simulate their instruments (Tompkins et al. 2010).  A 
spacecraft manufacturer or mission operations team also 
may build a simulator (Yen et al., 2005).  Often, 
simulations are used solely to check sequences against 
flight rules (Ko et al., 2004). 
Orbit Design and Communications. 
Flight design may simulate orbits using a commercial 
product like Satellite Toolkit (Tompkins et al. 2010).  
Orbits provide key information for mission planning 



systems.  Examples include day / night times, sun angles, 
and the relative locations of asteroids, comets, and 
communications assets. 

When Constraints Change 
Constraints can change greatly before a mission. Mission 
planning systems must accommodate these changes and be 
validated at low cost (Carraway et al. 1999).  For example, 
target changes (as happened on LCROSS (Tompkins et al. 
2010)) may require orbit changes, which can ripple further 
through the planning systems.  Changes in communication 
coverage can cascade in a similar manner.  While these 
changes may appear to be ‘mere’ changes in plans, if 
communication windows shrink, rules or constraints 
governing communication coverage times may need to 
change as well.   
 Changes to vehicle configuration (specific equipment, 
interconnection or equipment location, or equipment 
performance characterization) can also cause changes in 
mission planning constraints.  Examples include new flight 
rules, science instrument sequence changes, changes in 
maneuvers, or new power or thermal limits (Tompkins et 
al. 2010). 
 As mission planning systems mature, planners often find 
satisfying the constraints is too difficult.  For example, 
science teams and spacecraft manufacturers can provide 
overly conservative constraints early in mission 
development.  On examination, analysts may determine the 
constraints can be relaxed without compromising safety or 
science.

The Challenges of Configuration 
Space mission planning has benefited from the use of 
model-based planners.  However, there is a long-standing, 
fundamental problem in applying automated planning to 
physical systems.  This difficulty stems from developing 
system models that are disconnected from the system 
(which lead to inaccuracy) and from modeling 
representation language limitations (which add to 
complexity).  In order to make this concrete, consider the 
difficulty of representation of a relatively simple spacecraft 
activity: changing attitude. 

Assumptions 
We will illustrate the difficulty of modeling for space 
mission activity planning using the following assumptions: 

There is a spacecraft command and data dictionary. For 
simplicity, this section assumes the data dictionary 
includes orbit and attitude information. 
The simulator input includes a list of time-tagged 
commands from the command dictionary. 
The simulator runs deterministically.  

The simulator reports any errors (undesirable behavior); 
The system (spacecraft) and simulator are defect-free. 
The simulator is a black box (we can neither change nor 
inspect its code and models) 
The simulator outputs time-tagged samples of values of 
specific data from the data dictionary. 
Formal flight rules define mission constraints that are 
verifiable with the simulator output. 
A declarative modeling language configures the activity 
planning system, e.g. PDDL (Fox & Long, 2003).  
Every plan that the planner sends to the simulator is 
consistent with the planner’s model. 
A plan action corresponds to a list of time-tagged 
commands from the command dictionary.  
The planner is sound but not necessarily complete.  

An Example 
(:durative-action slew
 :parameters (?from – attitude 
              ?to - attitude)
 :duration (= ?duration 5)  
 :condition  
  (and  
   (at start (pointing ?from))  
   (at start (cpu-on))  
   (over all (cpu-on))  
   (at start (>= (sunangle) 20.0))  
   (over all (>= (sunangle) 20.0))  
   (at start (communicating))  
   (over all (communicating))  
   (at start (>= (batterycharge) 2.0)))  
 :effect  
  (and  
   (at start (decrease (batterycharge)2.0))  
   (at start (not (pointing ?from)))  
   (at end (pointing ?to))))   

The PDDL above configures the mission planning system 
for a spacecraft attitude change activity.  This activity 
model is more abstract than simulators of the spacecraft's 
command set, lighting conditions (a function of the orbit), 
dynamics of slewing the spacecraft, communication asset 
locations, spacecraft power utilization, and battery 
performance.  Typically, extracting knowledge to 
configure the planning system is manual, inefficient and 
error-prone.  Questions often include:  

How do planner model attitudes relate to real spacecraft 
operations’ continuous attitudes? For example, a deep 
spacecraft with camera directional sensors may require a 
discrete set of target attitudes only.  Often, there are 
designated pointing attitudes.  Examples are to Earth (for 
deep-space), Earth-nadir (for Earth orbits), and sets of 
navigation guide stars.  
How does the planner estimate battery discharge?  
Evaluating the spacecraft components is essential.  
Planners must account for all components that are active 
during the slew operation, which may require consulting 
the simulation. 



What drives slew duration?  One factor is angular slew 
distance.  Another factor is the attitude control system 
(reaction wheels, thrusters, torque rods). The spacecraft 
manufacturer characterizes that system in performance 
tests.  A third factor is spacecraft sequence (see below).  
Flight rules may govern slew sequences, and simulation 
may characterize the sequence duration and resource use. 
How does the planner model communication coverage?  
Coverage is a function of the spacecraft orbit, 
communication assets, spacecraft antenna type and 
configuration, many of which simulators analyze pre-
flight.  Flight rules could require spacecraft 
communications because ground systems must monitor 
spacecraft activities or command the slews. 
How does the abstract slew correspond to one or more 
sequences of spacecraft commands? Some spacecraft  
decompose attitude changes into a sequence of rotations 
in each major body frame (pitch, roll, yaw).   ‘Arbitrary’ 
slewing is possible, but limiting slews to one axis at a 
time is simpler and hence safer.  Mission planning can’t 
easily check some flight rules (e.g. voltage limits in the 
power system) and are checked by simulation. It is 
especially important to check for unexpected interactions 
between concurrent sequences. 

Figure 2: Hypothetical IMDE architecture. 

Before flight, the orbit, attitude, engineering subsystem 
specification and simulations can change frequently.  
These changes require reconfiguring the activity planner 
efficiently.  For example:  

New targets or navigation aids require updating the set 
of discrete attitudes. 
Analysis or changes in sequences can cause a change in 
attitude control system performance, leading to activity 
changes. 
Any power-using subsystem that changes performance 
(e.g., attitude control system or communication) will 
change the power consumption.  If planning determines 

mission objectives can’t be met, a need to slew faster 
could also increase power consumption  
Changing orbit, communication coverage plan, or 
antenna configuration may change the activity.   
Changing flight software, or the uses of major spacecraft 
operating modes, might require changing the commands 
that affect attitude  

Clearly, configuring the mission planning system with 
even the one activity described here requires much effort.   
The effort includes extracting knowledge from the flight 
rules, command and data dictionaries, and simulation APIs 
and output.  Currently, those data (and input from the 
mission operations system orbit, trajectory and 
communications elements) often reside in documents that 
are difficult to extract planning knowledge from. 

Interactive Model Development Environments for 
Space Mission Operations Applications  

The activity planning system’s main goal is to verify 
activity plans against the relevant constraints.  However, 
validating the planning system also requires validating the 
constraints themselves. 
 Academic planning languages and algorithms originally 
used Boolean state variables only.  Such variables are 
generally impractical for representing time, location, and 
other numerical states. Planning languages are more 
expressive now (Howey et al. 2004, Fox and Long, 2003) 
but their limitations still force inelegant workarounds that 
make system models complex.  Models strongly influence 
the performance of automated planning, so revising the 
model to improve performance can increase the complexity 
further.  This complexity can combine with human error 
and lack of information about the modeled system’s 
behavior to produce inconsistencies (with the model and 
the modeled system).  Finding the inconsistencies can 
require significant work, and fixing these inconsistencies 
can require significant changes. 
 To explain the challenge problem intuitively, this paper 
describes how a hypothetical Integrated Model 
Development Environment (IMDE) could integrate 
planning and simulation.  This integration could simplify 
validation of models within the development cycle, thereby 
making modeling for space mission planning more 
efficient. A more specific goal is integrating a planner and 
simulator to help automate model development and 
validation.  The goal is not conventional model checking, 
where the model by itself is checked for potential 
problems.  Instead, the model is being checked for 
consistency with the simulator. 
 The hypothetical IMDE design features and architecture 
are described in the next section.  It then describes two use 
cases: developing a mission planning domain using 



simulation and operating constraint specifications, and 
checking the specification for errors. 

IMDE design features 
The hypothetical IMDE differs from programming 
language IDEs.  It aids some tasks that are specializations 
of software development tasks.  The IMDE also includes 
features for validating a planning domain model against a 
simulation or operations constraints. 
 The simulation specification (which is synonymous with 
the command and data dictionary) gives the domain 
modeler a place to start.  In a perfect world, the domain 
model would map 1-1 to the dictionary.  More often, 
though, the mission planner is an abstraction of lower level 
commands.  Also, different types of mismatches between 
the planner model and source information indicate 
different types of links between planner, simulator, and 
constraints.   
 Figure 2 shows the system architecture of a hypothetical 
IMDE.  The Model Editor provides traditional IDE 
functions.  The Simulation Browser lets users access the 
command and data dictionary while creating models. The 
Abstraction Editor enables describing how plan model 
building blocks (objects, states, timelines, actions, 
constraints) relate to the simulation specification.  The 
Abstraction and Refinement Engines integrate the planner 
and simulator.  The Refinement Engine transforms a plan 
into simulator input.  The Abstraction Engine transforms 
simulator output into an ‘as-executed plan’ to be compared 
with the original plan.  The Validator compares the two 
plans and assesses discrepancies.  The Validator also takes 
as input any constraints not explicitly checked in the 
simulator (e.g., flight rules) that are part of the planning 
model. The Plan Viewer (not shown) visualizes (e.g. in a 
Gantt chart) the plans generated for a planning problem, as 
well as simulator output that should correspond to the 
plans.  The Plan Viewer (and/or a separate Error Viewer) 
shows mismatches between the plan and simulation (as 
described earlier).  Finally, the Fixer analyzes mismatches 
between the plan and simulation output and identifies 
model and abstraction elements for possible change. 
(Checking simulation output against flight rules is not 
shown but also a useful function.)  Since the simulator is a 
black box, there is no guarantee that affecting the 
suggested repairs will fix all problems. 

IMDE use cases 
The hypothetical IMDE’s user first creates a model.  Doing 
so requires deciding on the objects types and sets, fluents, 
actions, and action conditions and effects (and, for 
modeling languages that support them, timelines). In this 
process, the user can access the simulation interface as well 

as output produced directly from the simulation.  A typical 
workflow for this phase of modeling is as follows: 
1. User opens new model 
2. User browses simulation interface 
3. User either: 

a. Copies variables to the model (e.g. sunangle)
b. Abstracts variables in the model (e.g. an x,y,z 

attitude as a member of the planner object 
attitude)

c. Copies one command to model as an action (e.g. 
turn on CPU) 

d. Abstracts a command sequence to model an action 
(e.g. command sequence to slew spacecraft) 

4. Repeat
When the user performs these operations, they can 
document the relationship between the planning model and 
elements of the simulation using the Abstraction Editor, as 
shown in Figure 2.  This provides traceability so that 
elements of the model are ‘grounded’ in the simulation, 
and as we will see below, provides a means of detecting 
problems when things go wrong. 
 Adding a new variable or timeline to a domain model 
requires informing the Plan Viewer.  The Plan Viewer also 
must maintain a consistent view of the plans.  It is 
impractical to regenerate all of the plans from first 
principles every time the underlying models change.  So, 
an established policy must address stored plans generated 
using older models.  A typical plan repair strategy might 
work well for ‘scheduling’ errors in older plans.  But it 
may take a lot of work to indicate what must be fixed when 
an older plan’s timelines, semantics, and state and object 
names change. 
 The hypothetical IMDE user next compares planner-
generated plans and predictions to corresponding simulator 
output.  This phase could follow the following workflow: 
1. User edits initial state in planner 
2. IMDE generates and tests possible plans 

a. Translates planner initial state into simulator input 
b. Translates the plan into simulator commands 
c. Runs simulation 
d. Translates simulator output to an ‘as-executed’ plan 
e. Checks for errors against constraints 
f. Checks for discrepancies between planner’s plan 

and ‘as-executed’ plan 
3. User views plan, ‘as-executed’ plan, and errors 
4. IMDE suggests model changes based on test results 
5.  Repeat 

Translating plan information as abstraction and 
refinement 
The abstractions captured during initial plan authoring are 
heavily used in the previous workflow.  For example, one 
slew(?from,?to) action in the plan may translate into 



three ordered subsequences in the simulator that change 
different spacecraft attitude dimensions. Another 
abstraction type specifies how state variables in the 
planning model relate to those in the simulator output. One 
abstraction could define the mapping from spacecraft 
environment to attitudes: {px,py,pz} p
domain(attitude).  Another abstraction could map 
the at(?to) predicate to indicate whether the simulated 
attitude of the spacecraft is near a target attitude.  
Spacecraft attitude control systems often have dead-band 
modes.  Different modes trade pointing accuracy for 
propellant, power, and computer usage.  Different targets 
(e.g., communications and science) require different 
pointing accuracies.  So, the mapping from simulator 
output {x,y,z} to the desired attitude p={px,py,pz} would 
be  ||{x,y,z},{px,py,px}|| < d  at(?to=p)1.  In general, 
an abstraction could be any function of a set of time-
varying variables to a time-varying variable.  
 The Refinement Engine translates initial state 
information using these abstractions in Steps 2a and b of 
the process. The abstractions captured by the user are 
‘reversed’ in order to do so. For example, translating a 
plan’s slew(?from,?to) action into simulator 
commands would translate the symbol ?to to the 
corresponding simulator object’s coordinates.  
 The Abstraction Engine translates simulation results into 
‘as-executed’ information using the abstractions. There are 
two plan model references: one for generating the 
prospective plan and another for comparing the planning 
constraints to simulation results that are transformed into 
the ‘as-executed plan’.  The planner then compares the ‘as-
executed’ to the original plan predictions, possibly 
revealing numerous errors.  The next section explains this 
process. 

Identifying modeling errors 
 Unexpected simulator behavior can indicate modeling 
errors.  For instance, commands may fail due to gaps in the 
mapping from action to command.  To illustrate, 
slew(?from,?to) could fail because its decomposition 
lacks necessary power-up commands, because commands 
are improperly ordered, or because it occurs in an 
unexpected and incompatible system configuration.  
Checks on the simulation output (e.g. those assessing flight 
rule violations) can also detect these problems. 
 Modeling errors can also result in simulator output 
having constraint violations that the original plan lacks.  
For example, in testing the slew(?from,?to) action, 
suppose that a violation occurs because the simulation 
achieves at(?to) too late.  The modeling error may be 

1 Strictly speaking, evaluating the at(?position) abstraction on simulation 
ouput requires first evaluating the ?position abstraction. 

that the spacecraft turns slower than expected along one 
axis.
 In another error detectable at this stage, the power 
system simulator predictions of power consumption may 
not match the planner’s power consumption model.  A 
planning constraint, such as a minimum battery state of 
charge, might appear violated when comparing the 
simulation and the planner model.  Yet, unlike in the 
previous example, no action precondition or effect fails. 
 Finally, a host of errors may arise in checks of 
simulation output against flight rules.  For example, power 
bus voltage limits, dynamics constraints, structural load 
limits and other properties may be specified in flight rules 
or other engineering documentation, but must be checked 
against the simulation output variables describing those 
quantities as a function of the plan. 
 Discrepancies between the planner and simulator state 
value predictions need not be modeling problems.  
Defining the planning states as abstractions of the 
simulator’s states could naturally lose information.  For 
example, the planning model could represent battery 
depletion as instantaneous while the simulation represents 
depletion as gradual.  Discrepancies will probably manifest 
between the planned and simulated battery levels.  But, 
planning the battery levels conservatively could avert  
simulation failures.  The user may choose to omit specific 
discrepancies from reporting (as with waiving constraint 
violations in mixed initiative planning systems – see 
Aghveli et al. 2007).  However, the discrepancy might 
indicate an efficiency improvement opportunity: a more 
detailed battery depletion model could enable scheduling 
more activities. 
 An alternate workflow can check a plan against pre-
existing simulator output.  This method needs not translate 
planner initial states and plans to generate simulation runs.  
Instead, the method compares a plan’s commands and 
predicted state with corresponding, pre-existing simulation 
output.  In this case, errors may result from different 
commands or orderings in the plan and the simulation.  

Generating plans to validate pieces of the model 
Abstractions generally lead to loss of information.  There 
may be many possible valid simulations that can be 
abstracted to the same plan.  The reason for generating 
different plans to test is to validate that the model will 
work for all situations.  Validating the model requires 
validating all possible plans that can be constructed from 
the model.  There may be a manageable number of 
simulations that is enough to validate a single part of the 
model.  For example, if the user wants to ensure that the 
at(?to) effect is always satisfied at the end of 
slew(?from,?to) then a complete space of plans to 
test would combine all possible attitudes (slew from each 



attitude to each other attitude) and all possible initial states 
for slew(?from,?to). It is possible to generate all of 
these plans with special purpose code, but the planner itself 
may be leveraged to accomplish this.  Instead of generating 
all combinations, incorporate this parameterization into a 
planning problem: what initial state and ordering of 
instantiations of slew(?from,?to) will achieve 
at(?to) at the end? The set of valid solutions to this 
planning problem is the test suite. Unfortunately, this kind 
of test coverage problem is known to be quite difficult and, 
thus, part of the challenge. 
 A single plan may lead to many (possibly infinite) 
sequences to simulate.  This situation is apparent from the 
first flight rule described, in which several command 
sequences could be used to power down an instrument.  
Again, it may be possible to cleverly scope the validation 
to reduce the number of sequences tested. 

Suggesting changes to the model 
When the IMDE runs a batch of plans through the 
simulator, some may result in simulator errors and some 
may result in planning constraint errors.  These indicate 
that there are modeling errors, but the actual mistake made 
by the modeler may not be obvious, especially if the 
relevant system variables are not sampled very often or not 
part of the simulator output at all. The IMDE can suggest 
methods to fix inconsistencies between the plan test cases 
and corresponding simulator output.  For example, suppose 
a spacecraft failed to reach its destination attitude 
whenever the z-axis angle change exceeded 120 degrees.  
This condition could be added to the planning model.  
IMDE suggestions could include changing constraints on 
an action, adding state variables, or creating new actions, 
as described by the Fixer component in Figure 2.   
 For example, suppose the slew(?from, ?to) action 
never achieved at(?to), but the simulation output 
indicates that the spacecraft  never stopped moving and in 
fact oscillated around a deadband (as described earlier).  In 
this case, there was never a value reported in the results 
that the spacecraft attitude was in the vicinity of ?to
because the deadband mode was larger than the modeler 
expected.  The fix may not actually be to the model but to 
how simulator results are interpreted in the abstraction (the 
modeler chose the wrong deadband to map attitudes to the 
at(?to)value), or the action abstraction was wrong (the 
attitude controller invoked was the wrong one for the 
chosen attitude and the data abstraction was correct), or 
that all the abstractions are correct but the modeler chose 
the wrong action (i.e. there are multiple slew actions).   
 Can we automatically identify where the problem is?  
We could try to classify the conditions under which the 
errors occur.  If we look at this as a machine learning 
problem with the simulations of plans as the sample set, we 

could try and learn a function of plan and simulation output 
to whether an error was found.  Part of that function may 
be that whenever the rotation around the z-axis is greater 
than 120 degrees, |deltaZ| > 120, slew fails.  A direct 
fix to the model would be to bring deltaZ into the 
planning model and to add a precondition to the drive 
action that |deltaZ| <= 120.  The user could accept 
this fix and replace the deltaZ inequality with a Boolean 
longSlew abstraction in order to avoid numerical states.  
Note this approach works regardless of whether there are 
simulation errors, post-simulation checks to determine 
flight rule violations, or discrepancies between the 
simulation and the plan.  The learning problem is difficult 
because simulation output may vary in size for the same 
plan, and because it may require learning complex 
functions of the simulation data and abstractions. 

Technology Foundations 
While the ultimate vision of the IMDE has yet to be 
achieved, many component technologies have been built.  
In this section we describe some of these technologies as 
well as research activities that enable this goal. 
 To understand better how the proposed automated model 
development and validation may be used, consider the 
validation of the CASPER automated planning system for 
onboard commanding of NASA’s EO-1 spacecraft.  This 
validation process involved tabletop model reviews with 
EO-1 engineers and operators, safety reviews to elicit 
potential hazards, and automated tests stochastically 
generated as perturbations to nominal scenarios and 
executed on simulation platforms of varying fidelity where 
spacecraft, operations, and safety constraints were checked 
(Cichy et al., 2004).  The automation proposed here may 
not be able to eliminate any of these steps.  However, tests 
could be generated and executed for each edit to the model 
to identify, avoid, and fix modeling errors.  This testing 
could make the reviews simpler since plans have already 
been validated for a documented set of constraints by the 
simulators.  The reviews could focus on what rules have 
been checked instead of how they are being modeled. 
 The itSimple tool (Vaquero et al., 2007) is a plan 
domain modeling environment very similar to the proposed 
IMDE.  Users of itSimple can build ‘static’ models of 
objects, actors and relationships between them in a 
specialization of UML, and ‘dynamic’ models of how 
states of the objects are allowed to change using Petri Nets 
(an encoding of state charts); the Petri Net model acts as a 
simulation.  The resulting models are automatically 
translated by itSimple to PDDL, after which the users can 
continue refining the resulting models.  This ensures 
commonality between the primitives used in the simulation 
and in planning, and automates the translation from well-



known engineering formalisms used in the software world 
to declarative planning models.   In order to be used for 
space mission planning, the itSimple approach must be 
able to create planning models with time, resources, 
complex numerical state variables,  and complex resource 
constraints; the simple Petrie Net formalism is not 
expressive enough to do this.  Furthermore, the assumption 
that the simulation is captured by the plan domain modeler 
does not always match the space mission domain, where 
simulations are often black-box (although the approach can 
be quite valuable when a white-box simulation serves as 
the root of a planning model.)  
 The Procedure Integrated Development Environment 
(PRIDE) (Izygon et al., 2008) is a procedure authoring 
technology prototype that can be used to create procedures 
for execution by flight controllers and crew.  PRIDE  
presents procedure authors with a command and telemetry 
database characterized in XTCE (Simon et al., 2004); users 
can drag commands and telemetry references into a plan 
directly from the command and telemetry database GUI. 
PRIDE provides access to either state-chart simulations or 
high-fidelity simulations the procedure writer can use to 
manually check procedures for correctness.  Procedures 
can also be automatically verified by means of translation 
to Java and the use of model checking software (Brat et al., 
2008).  The use cases for creating procedures are quite 
similar to the assumptions made here.  However, 
procedures use the command and telemetry dictionary 
directly, with no abstraction, and ‘models’ are limited to 
including verify steps for post-conditions that can be 
checked by the procedure writer.  There is also no notion 
of automatically proposing fixes to plans. 
 The Constraint and Flight Rule Management System 
(ConFRM) (Barreiro et al. 2010) is a flight rule authoring 
environment.  ConFRM provides features to create and 
maintain links between related operational constraints, 
between constraints and source data such as simulations or 
engineering analysis documentation, as well as numerous 
IDE-like features to reduce the effort in creating and 
authoring operational constraints. Like PRIDE, ConFRM is 
intended to allow mission operators to create flight rules 
and operating constraints while browsing the command 
and telemetry specification of the spacecraft.  ConFRM 
prototypes included the ability to export declarative 
constraints to tools such as a planning system.  ConFRM’s 
link management functionality is similar to capability 
needed by the proposed IMDE.  Providing tools like 
ConFRM to the organizations providing source data to the 
planning system can further reduce the effort in ensuring 
flight rules and related constraints are created for easy 
integration with the planning system.  
 The Data Abstraction Architecture (DAA)  (Bell et al., 
2010) is designed to address the problem of transforming 
spacecraft or space system telemetry into useful 

information for operators (be they flight controllers or 
crew). The system allows system operators to write 
common data transformations using a GUI; the 
transformations are then executed by an engine that accepts 
telemetry as input, and produces more intuitive information 
as output.  The DAA framework is well suited to specify a 
number of abstractions needed for transforming simulation 
variables and values into plan domain model variables and 
values; however, it would need to be extended to capture 
transformations of commands to plan domain model 
actions. 
 VAL takes steps toward the Fixer IMDE element by 
validating that a specific plan is indeed a solution to a 
planning problem that may be specified with continuous 
effects, including limited forms of time-dependent change 
on numerical state variables (Howey, et al., 2004).  VAL 
can also advise modelers how to fix a plan.  The goal 
explored here is how to validate that all plans execute as 
intended and suggest fixes to the model, not just the plan.  
Furthermore, the approach in VAL would have to act on 
the ‘as-executed’ plans abstracted from the simulator. 
 The LOCM system (Cresswell et al. 2009) learns 
planning domain models from sets of example plans. Its 
distinguishing feature is that the domain models are 
learned without any observation of the states in the plan or 
about predicates used to describe them. This works be- 
cause of some restrictive assumptions about the form of the 
model describing the domain. In particular, the objects are 
grouped into sorts, and the behavior available to objects of 
any given sort is described by a single parameterized state 
machine.  LOCM is the latest in a number of plan domain 
learning systems that could be employed to abstract black-
box simulations into domain models as part of the Fixer in 
our proposed IMDE.  However, doing so requires plans to 
begin with, and hence requires interacting with simulators 
to create those plans.  Furthermore, learning directly on the 
simulation representation will not abstract the lower level 
commands, and will also not account for constraints 
manifested in flight rules.  While learning could be the 
mechanism to determine how to design and implement the 
Fixer as proposed in the IMDE, it is unclear precisely how 
to approach this aspect of the problem. 
  Bonasso et al. (Bonasso et al. 2010) describe a means 
of eliciting plan domain information from a human expert.  
They assume a domain ontology (things and their 
relationships) is available; they then analyzed common 
goals in an International Space Station Extra Vehicular 
Activity (EVA) domain, and constructed an interactive 
questionnaire that users could fill out in order to construct 
an action description that achieves a goal.  The structure of 
the questionnaire conforms to the structure of the action 
modeling language but does not force users to create 
descriptions in an unfamiliar format. Such an approach can 
be important as an adjunct to building flight rule 



documents that drive plan domain modeling.  Important 
gaps still to be resolved include deriving the ontology, and 
whether and how the system can be used to revise 
previously created actions.  Apropos to the validation 
issues described, the approach allows users to distinguish 
the purpose of an action (or constraints on its success) from 
side effects that are known to take place and may be of 
interest to others. 

Challenges in relaxing the assumptions 
The usefulness of the described IMDE may still be 
insufficient because of some limiting assumptions we 
made.  We describe those we believe are important and 
present additional challenges. 
 It is possible that an action may correspond to multiple 
commands, a loop, or any arbitrary function generating 
commands.  As long as this function is a legitimate 
simulator input, then this is not a difficult problem.   
 Many systems have uncertain behavior, for example, 
stemming from attitude and temperature control.  If the 
simulation testbed can be invoked in a way that explores 
different outcomes, then a single plan now corresponds to 
multiple (possibly infinite) test cases for which the model 
should be validated.  This presents an additional difficulty 
in determining a tractable number of test cases sufficient 
for validating the model.  It also presents a problem of how 
to model the activity correctly; if the action duration varies 
between 30 and 40 seconds, what is the best value to use? 
 In addition, the spacecraft may be able to execute 
sequences conditioned on the perceived system state.  This 
requires simulations that incorporate all possible perceived 
states that could influence the plan outcomes.   
 We have discussed some basic examples of modeling 
errors on preconditions and effects.  For expressive 
language elements such as activity decomposition (as 
opposed to the abstractions mapping plan actions to 
sequences of simulator commands) and parameter 
dependency functions, how can errors and fixes be 
automatically identified? 
 Relaxing other assumptions may not pose difficult 
research challenges but can change the nature of the 
system capability.  For example, if the simulator or 
spacecraft does have defects (which we must always 
assume is true), then discrepancies that are inconsistencies 
between planned and executed behavior may now (in 
addition to modeling errors) also be indications of those 
defects.  So the system now can identify simulator and 
system defects and help validate them against the planner.  
Thus, the IMDE may more generally be designed for 
validating multiple systems against each other.  This 
validation is especially important for interactions between 
autonomous spacecraft subsystems (such as an onboard 
planner or a guidance, navigation, and control system). 

 Another assumption was that the simulator is a black 
box. One option is to treat the effects of an action as 
properties that are input to a model checker, which is used 
to directly analyze the simulation model. The System-
Level Autonomy Trust Enabler (SLATE) validates a 
complete model of the system and its operation, 
incorporating device, control, execution, and planning 
models (Boddy et al., 2008).  The conventional approach 
of building a model only at an abstract level requires much 
extensive testing of different scenarios and could only be 
guaranteed to work if all possible scenarios are tested.  
SLATE only requires testing of individual behaviors 
whose performance envelopes are incorporated into the 
model.  Thus, since the model of the system is complete, it 
can be used to prove system-level properties similar to 
model checking. Another strategy for validating plan 
abstractions (in particular, those of hierarchical plans) is to 
summarize the potential constraints and effects of the 
potential decompositions of each abstract action in the 
model (Clement et al., 2007).  A planner can use this 
summary information to create a plan whose actions are 
detailed to different levels necessary to conclude that all 
further refinements of the plan are either valid or invalid.  
Like SLATE, summary information validates higher level 
actions composed of more detailed validated actions.  
Summary information differs in that abstract actions retain 
choices of refinement for flexibility of execution, while 
abstract actions in SLATE are robust to uncertain system 
behavior. Instead of validation through testing like 
SLATE, summary information relies on an accurate, fully 
detailed model and is, thus, valuable for validating an 
action model based on its decomposition into a white box 
simulation model that can be summarized.  For example, 
the slew action's effect at(?to) would be validated if 
its summarized effects included must at(?to),
meaning that at(?to) is an effect of all possible ways to 
execute the slew. 
 A more aggressive approach is to automatically abstract 
the simulation model to create the planner model, i.e. 
augment the approach of itSimple (Vaquero et al. 2007) to 
translate more expressive models to declarative planning 
languages.  Automating such translations requires a deep 
understanding of the simulation modeling language, and 
may not be feasible for all simulation approaches. 

Conclusion
The maturation of model-based planning provides an 
opportunity to improve the state of the art in space mission 
planning.  However, doing so will require planning models 
to represent complex constraints derived from many 
sources of information, and for spacecraft engineers to be 
able to build and validate these models.  We have 



described the challenges in doing so, and described the 
Interactive Model Development Environment as a means 
of reducing up-front errors as well as providing numerous 
tools to catch and repair errors in building models. While 
the technologies described in the previous section support 
features of the described IMDE, there remain significant 
research challenges to achieve the overall vision. 

How can a complete but tractable space of test cases be 
identified for activity model validation? 
Can a single test case contribute to the validation of 
multiple model elements? 
How can errors in different modeling language features, 
command refinement, and data abstraction be clearly 
identified based on simulation output of these tests? 
What are the features of a learning problem for 

classifying an error? 
How can suggested fixes be generated for these errors? 
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