Deep Space Acquisition and Tracking with Single Photon Detector Arrays

William Farr, Suzana Sburlan, Adit Sahasrabudhe, and Kevin M. Birnbaum

May-2011
Deep Space Optical Communications

Sun
Can be field of view
Primary source of optical noise

Deep Space
Large distance
Large 1/R² range loss
Large 2R/c round-trip light time

Downlink
- Stabilized by vibration isolation system & uplink beacon
- Gb/s return link data
- Ranging

Uplink
- Blind points to spacecraft
- Aids downlink pointing
 Reference for removal of S/C jitter
 Reference for point-ahead angle
- Mb/s forward link data
- Ranging

Earth at T₁+RTLT
Earth at T₁
Transceiver Beam Relationships

- Must form an accurate estimate of the location of the dim laser beacon to point the transmit beam to the Earth receiver location.

- The point ahead angle depends on the transverse component of the Earth’s velocity relative to the spacecraft.
 - In deep space applications with light propagation times of many minutes the point ahead angle can be many beam widths.

- Handshaking with the Earth receiver to confirm point ahead in real time is not possible.
 - A local relative measurement must be made.
Acquisition, Tracking, and Data Detector

- Single focal plane receiver architecture with simultaneous acquisition, tracking and uplink data demodulation
 - Versus two or three typical for an optical receiver design
 - Reduces transceiver mass – Increases transceiver reliability
- A nested beacon modulation scheme can be used for background subtraction and multi-rate uplink data

Beacon Centroiding

Uplink Receiver (clock & data)

Tracking Process

Full Frame Image (for acquisition)

1. Sync Pattern (square wave)
2. Low rate command channel (2-PPM) + 100% guard-time
3. High rate data channel (16-PPM) + 25% guard-time

Transmitted signal
Analog vs. Photon Counting

- A significant limitation on estimation accuracy is detector noise
 - The centroiding performance of an analog focal plane array can be 10 to 100 times poorer than the shot noise limit due to readout noise

- A focal plane array of single photon detectors (SPD) can achieve shot noise limited performance
 - Operate with 10 to 100 times less beacon transmit power

- The SPD array can also increases uplink rate from < 100 b/s (Si CCD or InGaAs FPA) to multi-Mb/s
 - Sub-nanosecond photon arrival timing
Pixel Processing

- The focal plane array is composed of “slow” and “fast” pixels
 - A 2x2 or larger sub-array of fast pixels is located at the beacon tracking position
- When the “slow” counters are alternating between the “up” and “down” modes, the background rate has no average effect on the counter state
 - Conversely, if the counters are run in the “up” mode only, the background rates are preserved

\[
\begin{align*}
\langle up \rangle &= 4\lambda_b T_{slot} - 3\lambda_s \phi + 2\lambda_s T_{slot} \\
\langle down \rangle &= 4\lambda_b T_{slot} + 3\lambda_s \phi \\
\langle up \rangle - \langle down \rangle &= 2\lambda_b T_{slot} - 2\lambda_s \phi \\
\langle up \rangle + \langle down \rangle &= 8\lambda_b T_{slot} + 2\lambda_s \phi
\end{align*}
\]
Acquisition and Tracking

- Temporal acquisition of the uplink beacon square wave signal uses outputs from a pair of phase-offset counters
 - Combining the two counters yields an estimate of the incident signal level, while allowing the pulses from noise and background radiation to cancel out
- Once a signal is detected on the slow pixels, the transceiver can be pointed to place the uplink on the fast pixels
Summary

• Use of SPD arrays with per-pixel counters allows centroiding performance at the theoretical limit for precision optical beam pointing
 – Required laser beacon power for acquisition and tracking can be reduced by a factor of 10 to 100
• SPD array pixels can have sub-nanosecond timing resolution, allowing precision recovery of photon time-of-arrival information
 – For uplink data recovery or range measurements

The work described here was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology under contract with the National Aeronautics and Space Administration (NASA)