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Abstract 
A principal obstacle to fielding automated planning systems 
is the difficulty of modeling.  Physical systems are modeled 
conventionally based on specification documents and the 
modeler’s understanding of the system.  Thus, the model is 
developed in a way that is disconnected from the system’s 
actual behavior and is vulnerable to manual error.  Another 
obstacle to fielding planners is testing and validation.  For a 
space mission, generated plans must be validated often by 
translating them into command sequences that are run in a 
simulation testbed.  Testing in this way is complex and 
onerous because of the large number of possible plans and 
states of the spacecraft.  Though, if used as a source of 
domain knowledge, the simulator can ease validation.  This 
paper poses a challenge: to ground planning models in the 
system physics represented by simulation. A proposed, 
interactive model development environment illustrates the 
integration of planning and simulation to meet the 
challenge.  This integration reveals research paths for 
automated model construction and validation. 

Introduction
A model-based system is software typically for analyzing 
or optimizing another system that it models in some 
representation language.  There are several applications 
that have benefited from using model-based planners.  But, 
there are long-standing, fundamental problems in applying 
automated planning to physical systems: models are 
abstractions that are disconnected from the physical system 
(reducing accuracy) and limited in representation 
(increasing complexity).  Brooks remarked, “Explicit 
representations and models of the world simply get in the 
way.  It turns out to be better to use the world as its own 
model” (1991).  The successes of model-based applications 
dull this point, but developing a model that is sufficient for 
a real application can be a painful struggle, especially if the 
modeling language is missing basic features like numeric 
state variables, in which case the language can seem to 
“get in the way.”  While languages have become more 
expressive, algorithms that parse them do not scale well, 
and detailed modeling may require too much effort.  
Abstraction has its advantages!  So, can existing planning 
systems somehow use “the world” as their model? 

 That is the challenge: to ground an automated planner in 
system physics (“the world”) and thus simplify model 
development, verification, and validation.  Space missions 
often develop simulation testbeds that serve as ground truth 
for the system and can be automated to evaluate test cases 
in batches.  So, one approach to meeting the challenge is to 
help automate model development and testing by 
integrating the planner and simulator. 
 We first describe a sample activity to show the 
complexity of translating diverse information sources into 
different elements of a declarative domain model.  We then 
explain how prior work in verification and validation does 
not address this problem. We propose an Interactive Model 
Development Environment (IMDE) to simplify the 
construction, validation, and maintenance of automated 
planning systems with help from a simulator.  The majority 
of the paper describes IMDE functions and architecture.  
We discuss both current and near-term technologies that 
can be used to build such an IMDE and mention progress 
on a proof-of-concept implementation.  We conclude with 
research goals that could help produce valuable mission 
planning technologies. 

Model Development Challenges 
As discussed above, fielding model-based planning 
applications is challenging because typical modeling 
processes are complex and error-prone and because the 
combinations of possible test scenarios can seem as 
overwhelming as testing the entire system being modeled. 
 Originally planning languages and algorithms used only 
Boolean state variables.  Such variables are generally 
impractical for representing time, location, and other 
numerical states. Planning languages are more expressive 
now (Howey et al. 2004, Fox and Long, 2003) but their 
limitations still force inelegant workarounds that make 
system models complex.  Modeling choices can strongly 
influence the performance of automated planning.  So, 
performance requirements can spur model revisions that 
increase complexity further.  This complexity compounded 
by human error and lack of information about the modeled 



system’s behavior can produce inconsistencies with the 
model and the modeled system.  Identifying and fixing 
these inconsistencies can require significant work. 
 To make the discussion concrete, consider the difficulty 
of representing an activity for changing a spacecraft’s 
attitude (its 3-dimensional orientation). 

Example activity model of spacecraft slewing  
(:durative-action slew
 :parameters (?from – attitude 
              ?to - attitude)
 :duration (= ?duration 5)  
 :condition  
  (and  
   (at start (pointing ?from))  
   (at start (cpu-on))  
   (over all (cpu-on))  
   (at start (>= (sunangle) 20.0))  
   (over all (>= (sunangle) 20.0))  
   (at start (communicating))  
   (over all (communicating))  
   (at start (>= (batterycharge) 2.0)))  
 :effect  
  (and  
   (at start (decrease (batterycharge)2.0))  
   (at start (not (pointing ?from)))  
   (at end (pointing ?to))))   

The PDDL above specifies a spacecraft attitude change 
activity.  The activity model is more abstract than a typical 
simulator’s, which would use the spacecraft's command 
set, lighting conditions (a function of the orbit), dynamics 
of slewing the spacecraft, communication asset locations, 
spacecraft power utilization, and battery performance.  
Typically, extracting knowledge from the simulator to 
configure the planning system is manual, inefficient and 
error-prone.  The modeler may have a lot of questions: 

How do planner model attitudes relate to real spacecraft 
operations’ continuous attitudes? For example, does it 
suffice to represent a deep-space craft with camera 
directional sensors using a discrete valued attitude 
variable with values such as to-Earth (for deep-space), 
Earth-nadir (for Earth orbits), Sun-pointing (for solar 
power generation), and others for sets of navigation 
guide stars?  How does data from the inertial 
measurement unit map to these discrete directions? 
How does the planner model battery discharge?  How 
can the model conservatively estimate the battery energy 
consumed by subsystems for different possible system 
states?  For example, does temperature affect power 
usage?  How is a cap on battery capacity modeled to 
avoid overfilling?  How is solar recharging modeled? 
What drives slew duration?  Is it proportional with 
angular slew distance?  Will a slew always follow the 
shortest rotation?  Must it avoid pointing instruments at 
the sun?  What determines the choice of control system 
(reaction wheels, thrusters, or torque rods)? 
How is reaction wheel momentum dumped? 

Along what axes can the spacecraft slew while 
communicating? conducting science measurements? 
recharging the battery? changing trajectory? 
What are the communication coverage requirements?  
What information is needed about the spacecraft orbit, 
availability of ground communication assets, and the 
spacecraft antenna type and configuration?  When do 
ground stations require communications to monitor 
trajectory changes or other related activities? 
How does the abstract slew correspond to one or more 
sequences of spacecraft commands? Are there setup and 
teardown activities? Is the slew for each axis performed 
separately to avoid risk of concurrent interactions? 

Before flight, the orbit, attitude, engineering subsystem 
specification, and simulations can change frequently.  
These changes require efficiently reconfiguring the activity 
planner.  For example:  

New targets or navigation aids require updating the set 
of discrete attitudes. 
Changes in sequences can cause a change in attitude 
control system performance, leading to activity changes. 
Any power-using subsystem that changes performance 
(e.g., attitude control system or communication) will 
change power consumption.  If planning determines 
mission objectives are infeasible, a need to slew faster 
could also increase power consumption  
Changing orbit, communication coverage plan, or 
antenna configuration may change the activity.   
Changing flight software (or the uses of major spacecraft 
operating modes) might require changing the commands 
that affect attitude. 

Verification, validation, and model checking 
Validating the planning model (not just a plan) is a central 
challenge to automating model development.  The planning 
system is partly a plan verification system because it 
checks constraints on system states that the plan’s activities 
affect.  However, validating the plan additionally requires 
validating that the effects are realized as expected.  
Validating the planning model requires validating all plans 
that the planner generates or accepts as feasible. 
 Model checking may detect violations of formal 
properties by the planning model or individual plans “in 
isolation” (e.g., Howey et al., 2004, Brat et al., 2008, Long 
et al., 2009, Raimondi et al., 2009, Cesta et al., 2010), but 
our goal is to validate the model against the simulator.  
Simulation of activities in the planning model can directly 
indicate problems, for example, an unrealized effect of an 
activity or a system fault.  Model checking cannot 
substitute for this functionality without using a complete 
model of the simulator.  Current model checking systems 
have the same representation and scaling problems as 



planning, so a detailed model (which rarely exists anyway) 
would likely be unusable. 

Interactive Model Development Environment 
We now describe an approach that integrates planning and 
simulation in order to help automate model development 
and validation in the context of a hypothetical IMDE.  We 
make assumptions that simplify the discussion, describe 
IMDE design features and architecture, and outline a 
concept of operation for modeling with the IMDE. 

Assumptions 
The following assumptions simplify stating the challenge 
in the IMDE context and also indicate additional 
challenges addressed toward the end of the paper. 

The simulator input includes a list of time-tagged 
commands. 
The simulator runs deterministically.  
The simulator reports any errors (undesirable behavior). 
The system (spacecraft) and simulator are defect-free. 
The simulator is a black box (the user can neither change 
nor inspect its code and models) 
The simulator outputs time-tagged value samples of 
system state variables. 
Formal flight rules define mission constraints that are 
verifiable with the simulator output. 
Every plan that the planner sends to the simulator is 
consistent with the planner’s model. 
An action in the plan corresponds to a list of time-tagged 
commands. 
The planner is sound but not necessarily complete.  

IMDE design features 
The hypothetical IMDE could share many features of a 
traditional programming language Integrated Development 
Environment (IDE); An IMDE’s model corresponds to an 
IDE’s code, plans correspond to test cases, and the 
simulator corresponds to the computer.  One distinctive 
IMDE function is the generation of test cases to aid model 
validation.  Another is the generation of suggestions on 
how to fix modeling errors.  In the traditional IDE, this is 
similar to suggesting code fixes for program run failures.  
Following sections discuss validation and model fixes. 
 Figure 1 shows the system architecture of the propsoed 
IMDE.  The Model Editor provides traditional IDE 
functions.  The Simulation API Browser provides model 
creators access to the simulation API. With the Abstraction 
Editor a user documents how plan model building blocks 
(objects, states, timelines, actions, constraints) relate to 
data and commands in the simulation API, thus providing 
traceability for detecting model problems.  These 
abstractions are the semantic glue connecting the planner 

to the “the world”/simulator.  The Abstraction and 
Refinement Engines integrate the planner and simulator.  
The Refinement Engine transforms a plan into simulator 
command input.  The Abstraction Engine transforms 
simulator output into an actual/simulated execution for 
comparison with the expected/planned execution.  These 
executions are time-tagged actions and state variable 
values in the language of the planner.  The Validator 
identifies discrepancies between the two executions, errors 
reported by the simulator, and any planning model 
constraint violations, some of which the simulator may not 
check (e.g., flight rules).  A Plan Viewer (not shown) 
comparatively displays the simulated and planned 
executions (e.g., in a Gantt chart).  The Plan Viewer 
(and/or an Error Viewer) visualizes discrepancies between 
the executions and highlights those that indicate modeling 
errors.  Finally, the Fixer suggests model changes that may 
eliminate one or more errors seen in the current and past 
simulations of different plans.  We explain how to detect 
errors and make suggestions after describing the IMDE 
concept of operation. 

Figure 1: Hypothetical IMDE architecture.
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Concept of operation 
An IMDE user may start with an empty or existing 
planning domain model.  Depending on the modeling 
language, an edit to the model may add, change, or remove 
actions, state variables, constraints, and effects (or their 
associated object types and sets).  The user may create and 
edit abstractions to ground the model in simulator 
elements.  A simulation interface exposes these elements, 
including commands and system state variables.  These 
edits initiate the following basic workflow. 

1. The user edits the model, or 
2. the user edits abstraction by either 

a. copying variables from the simulator interface to 
the model (e.g. sunangle), 

b. abstracting variables in the model (e.g. 
(pointing Earth) is true in the planner if the 
simulator’s xyz attitude is for each axis within 1 
degree of the attitude to point directly at Earth), 

c. copying a simulator command to the model as an 
action (e.g. turn on CPU), or 

d. abstracting a command sequence to model an 
action (e.g. command sequence to slew spacecraft) 

3. The IMDE generates possible initial states and plans 
and tests each by 
a. translating the initial state and plan into simulator 

commands, 
b. running the simulator with those commands, 
c. translating simulator output to an execution, 
d. checking the execution for violations of constraints 

in the planning domain model, and 
e. checking for discrepancies between planned and 

simulated executions. 
4. The IMDE analyzes test results to suggest changes to 

the planning model that could fix discrepancies. 
5. The user assesses planned and simulated executions, 

their constraint violations, their discrepancies, and 
suggested fixes. 

6. Repeat.

 The idea is that when the user edits the model, in the 
background the IMDE generates and simulates different 
plans to search for discrepancies indicating modeling 
errors.  The user can be made aware of these errors even 
while editing (much like syntax errors in an IDE), and 
when the user is ready to see what is in error, the IMDE 
may already have suggested fixes for the user to select. 

Translating plan information as abstraction and 
refinement 
The previous workflow uses abstractions heavily.  For 
example, in step 3a the Refinement Engine may translate 
one slew(?from,?to) action in the plan into three 

ordered subsequences of simulator commands to rotate the 
spacecraft around each of its three axes.  In step 2c and 2d, 
the user specifies this abstraction as an action 
decomposition, similar to hierarchical plan decomposition 
(Clement et al., 2007). 
 Another abstraction type for data specifies how state 
variables in the planning model relate to those in the 
simulator output. For example, an abstraction could map 
the simulator xyz spacecraft attitude to a discrete 
(pointing ?target) planner predicate, with 
?target either Earth, Sun, or SomewhereElse.
An abstraction function could specify that (pointing
Earth) is true if the simulator xyz attitude for each axis 
is within 1 degree of pointing the transceiver to the Earth’s 
center.  In general, an abstraction could be any function of 
a set of time-varying variables that calculates the time-
varying values of some variable. 
 When the Refinement Engine translates initial state and 
plan information into simulator commands using these 
abstractions in steps 2a and b, some data abstractions may 
need to be reversed.  For example, translating a plan’s 
slew(Sun,Earth) action into simulator commands 
would translate the Sun and Earth symbols to the 
corresponding xyz attitudes for pointing to the targets.  
 The Abstraction Engine checks for discrepancies with 
the planned execution and helps identify modeling errors 
by translating simulation results into execution information 
in the planner language using the abstractions in Step 3c.  
The abstractions provide the time-varying planner state 
values, but another step is needed to construct the 
execution that explains these values.  Our assumptions 
make this relatively simple, but in general it can be a 
difficult state estimation optimization problem. 

Identifying modeling errors 
Modeling errors are indicated by errors explicitly reported 
by the simulator and by plan constraint violations on the 
simulated execution that do not occur in the planned 
execution (a discrepancy in constraint violations).  For 
example, in testing the slew(Sun, Earth) action, the 
simulator might report an error from the fault management 
system because the computer had not yet been booted 
when commands were sent to the reaction wheels (a flight 
rule violation).  This is an error in the planning model 
because the slew action lacked a necessary precondition 
that the computer be booted.  As another example, the plan 
test case might include a goal (or constraint) (pointing 
Earth) to check that the effect of a slew is achieved.  
The simulator output could be error-free and translate back 
to an execution where (pointing Earth) was never 
achieved, failing the goal.  This could be the result of the 
plan containing another overlapping slew command that 



commanded the spacecraft to retarget the slew.  In this case 
the modeling error was in allowing overlapping slews. 
 This simple specification for identifying modeling errors 
applies generally to different kinds of errors.  For example, 
how would an error in the timing of a slew be detected?  If 
the model specified a fixed duration for slew, the test plan 
still only needs a constraint that (pointing ?to) be 
true at the end of the slew activity.  If the slew takes 
longer than expected, then the constraint will be violated in 
the simulated execution. 
 Discrepancies between the planner and simulator need 
not be modeling problems.  Defining the planning states as 
abstractions of the simulator’s states could naturally lose 
information.  For example, the planning model could 
represent battery depletion as instantaneous while the 
simulation represents depletion as gradual.  Discrepancies 
will probably manifest between the planned and simulated 
battery levels.  But, planning the battery levels 
conservatively could avert simulation failures.  The user 
may choose to omit specific discrepancies from reporting 
(as with waiving constraint violations in mixed initiative 
planning systems, Aghveli et al. 2007).  However, the 
discrepancy might indicate an efficiency improvement 
opportunity: a more detailed battery depletion model could 
enable scheduling more activities. 
 These discrepancies of inefficiency could be detected by 
running plans that have constraint violations through the 
simulator and seeing if the violation is occurs in the 
simulated execution. 

Generating plans to validate the model 
The reason for generating different plans to test (step 3) is 
to validate that the model will work for all situations.  
Validating the model requires validating all possible plans 
that can be constructed from the model.  In general, there 
may be an infinite number of possible plans, but there may 
be a manageable number that is enough to validate a single 
part of the model. 
 For example, if the user wants to ensure that the 
(pointing ?to) effect is always satisfied at the end of 
slew(?from,?to), then a complete space of plans to 
test would combine all possible initial attitudes, slews for 
all target attitudes (slew from each attitude to each other 
attitude), all possible additional actions (slews from each 
target to each other target), and the different temporal 
orderings of those other actions with respect to 
slew(?from,?to).
 It is possible to generate all of these plans with special 
purpose code, but the planner itself may be leveraged to 
accomplish this.  Instead of generating all combinations, 
incorporate this parameterization into a planning problem: 
what initial state and ordering of instantiations of 
slew(?from,?to) will achieve (pointing ?to) at 

the end? The set of valid solutions to this planning problem 
is the test suite. 
 Now, it is expected that multiple simulations could map 
to a single plan.  For example, there are an infinite number 
of xyz attitudes that translate to (pointing Earth).
So, why not test all possible simulations instead of all 
possible plans?  If plans are meant to be the only 
mechanism for generating command sequences for the 
spacecraft, the other simulations will never occur because a 
plan only translates to one set of commands resulting in 
one deterministic simulation.  On the other hand, the initial 
state is not dependent on actions in the plan, so the 
complete space of test cases would include the infinite 
number of attitudes that translate to (pointing
Earth).  In this case, conventional test coverage 
techniques may still be necessary. 
 Another reason to generate simulations instead of plans 
may be that the model has just been started, and many 
actions have yet to be modeled, so the necessary plan-
based test cases to validate the first modeled action would 
be insufficient.  Thus, generating simulations based on the 
simulator interface specification (using simulator 
commands instead of planner actions) would be useful and 
more robust to model changes.  It may also be better to 
generate simulator-based test cases when there are many 
actions in the planning model.  If activities are defined for 
many combinations and orderings of simulator commands, 
then the space of plans necessary to validate an action 
could be greater than the space of simulations due to 
repetition of simulator commands in a combination of 
actions. 
 Again, it may be possible to cleverly scope the 
validation to reduce the number of sequences tested.  For 
example, test cases including two slews following the slew 
to be validated should find the same errors as those test 
cases with only a single following slew.  Thus, a tractable 
number of test cases may be identified for validating an 
action in a model.  This test coverage problem is known to 
be quite difficult and, thus, part of the challenge. 
 The tractability of validating the entire model depends 
on that of individual actions.  Validating each action in 
isolation is enough to validate the entire model since the 
soundness of the planner guarantees combinations of 
actions. 

Suggesting changes to the model 
When the IMDE runs a batch of plans through the 
simulator, some may result in simulator errors and some 
may result in planning constraint errors.  These indicate 
that there are modeling errors, but the modeler may not be 
able to deduce the actual mistake by looking at any one 
execution.  For example, suppose the slew was never 
executed because the CPU was never turned on, resulting 



in a simulation error flag.  There would be a violation of 
(pointing Earth) in the simulated execution, but no 
information in the output ties the safing of the spacecraft 
with the state of the computer. So, the modeler would have 
to know the spacecraft (and simulator) very well to guess 
the problem after seeing it in a single run. 
 By finding relationships between plan/state attributes 
and simulator/discrepancy errors, the IMDE can generate 
plausible suggestions for fixing the model.  For example, if 
a complete set of test cases showed that the slew failed 
every time that the computer was not booted, a machine 
learning classifier or data mining algorithm could identify 
the pattern.  Then, the IMDE could suggest abstracting the 
computerMode variable in the simulator interface to a 
cpu-on predicate in the planning model and add the 
predicate as a precondition to slew.  Other suggestions 
include adding a constraint that a turnOnCpu action 
always precedes slew or adding a simulator command to 
the slew abstraction/decomposition to bootCpu.  These 
suggestions from the IMDE Fixer component (see Figure 
1) could include changing constraints on an action, adding 
state variables, or creating new actions.  Similar 
suggestions could be made to fix the abstractions.  
 The challenge of generating suggestions may be in 
framing the learning problem.  Plans have variable 
numbers of actions, so there is not an obvious feature set 
over which to learn.  In addition, the modeler may want 
suggestions in terms of complex functional relationships of 
multiple variables.  For example, the desired fix may be to 
avoid exhausting memory storage by adding a constraint 
that the sum of durations of all communications activities 
in a day must be greater than the sum of data collected 
multiplied by a particular constant.  The number of 
functional relationships that may be part of a feature set of 
a learning algorithm could easily be intractable.  On a 
positive note, the modeler may be able to deduce the 
needed fix with the help of overly-specific suggestions 
learned from a limited set of features.

Technology Foundations 
While the ultimate vision of the IMDE has yet to be 
achieved, many component technologies have been built.  
This section describes some of these technologies as well 
as research activities that enable the goal. 
 The itSimple tool (Vaquero et al., 2007) is a plan 
domain modeling environment very similar to the proposed 
IMDE.  Users of itSimple can build static models of 
objects, actors, and relationships between them in a 
specialization of UML and dynamic models of how states 
of the objects are allowed to change using Petri Nets (an 
encoding of state charts); the Petri Net model acts as a 
simulation.  The resulting models are automatically 

translated by itSimple to PDDL, after which the users can 
continue refining the resulting models.  A distinct 
difference from the IMDE approach is the assumed access 
to the simulator model (white-box simulation). 
 The Procedure Integrated Development Environment 
(PRIDE) (Izygon et al., 2008) is a procedure authoring 
technology prototype that can be used to create procedures 
for execution by flight controllers and crew.  PRIDE  
presents procedure authors with a command and telemetry 
database; users can drag commands and telemetry 
references into a plan directly from the command and 
telemetry database GUI. PRIDE provides access to either 
state-chart simulations or high-fidelity simulations that the 
procedure writer can use to manually check procedures for 
correctness.  Procedures can also be automatically verified 
by means of translation to Java and the use of model 
checking software (Brat et al., 2008).  The use cases for 
creating procedures are quite similar to the assumptions 
made here.  However, there is no abstraction mapping, and 
procedures lack formalisms needed for planning.  
 The Data Abstraction Architecture (DAA)  (Bell et al., 
2010) is designed to address the problem of transforming 
spacecraft or space system telemetry into useful 
information for operators (be they flight controllers or 
crew). The system allows system operators to write 
common data transformations using a GUI; the 
transformations are then executed by an engine that accepts 
telemetry as input, and produces more intuitive information 
as output.  The DAA framework is well suited to editing 
data abstractions for the IMDE, but it would need to be 
extended to capture transformations of plan actions into 
simulator commands. 
 VAL takes steps toward the Fixer IMDE element by 
validating that a specific plan is indeed a solution to a 
planning problem that may be specified with continuous 
effects, including limited forms of time-dependent change 
on numerical state variables (Howey, et al., 2004).  VAL 
can also advise modelers how to fix a plan.  The goal 
explored here is how to validate that all plans execute as 
intended and suggest fixes to the model, not just the plan.  
Furthermore, the approach in VAL would have to apply to 
simulated executions. 
 The LOCM system (Cresswell et al. 2009) learns 
planning domain models from sets of example plans. Its 
distinguishing feature is that the domain models are 
learned without any observation of the states in the plan or 
about predicates used to describe them. This works 
because the objects are grouped into sorts, and the behavior 
available to objects of any given sort is described by a 
single parameterized state machine.  LOCM is the latest in 
a number of plan domain learning systems that could be 
employed to abstract black-box simulations into domain 
models as part of the Fixer in our proposed IMDE.  
However, doing so may require learning abstractions from 



simulated command sequences, which plan domain 
learning systems presently do not do. 
 Techniques for ordering test cases to expose errors more 
quickly can also be leveraged.  Instead of generating test 
plans by systematically trying each permutation of plan 
features, test cases may be chosen that are believed to more 
likely discover a flaw based on results of past cases.  The 
Nemesis test system has had success with this by using a 
genetic algorithm to smartly choose test cases (Barltrop et 
al., 2010).  A complementary strategy is to use coverage 
techniques to quickly sweep across the landscape of test 
cases and learn combinations of features to more quickly 
converge on a formula describing the conditions under 
which a flaw appears (Barrett, 2009).  This can be used to 
converge quickly on suggestions to fix modeling errors.  

Challenges in relaxing the assumptions 
The usefulness of the described IMDE may still be 
insufficient because of limiting assumptions.  We describe 
those we deem important and their associated challenges. 
 It is possible that an action may correspond to multiple 
commands, a loop, or any arbitrary function generating 
commands.  As long as this function is a legitimate 
simulator input, then this is not a difficult problem.   
 Many systems have uncertain behavior, for example, 
stemming from attitude and temperature control.  If the 
simulation testbed can be invoked in a way that explores 
different outcomes, then a single plan now corresponds to 
multiple (possibly infinite) test cases for which the model 
should be validated.  This presents an additional difficulty 
in determining a tractable number of test cases sufficient 
for validating the model.  It also presents a problem of how 
to model the activity correctly; if the action duration varies 
between 30 and 40 seconds, what is the best duration value 
to use?  Moreover, constructing the simulated execution 
from state values may not be obvious and, in general, can 
be a difficult state estimation problem! 
 In addition, the spacecraft may be able to execute 
sequences conditioned on the perceived system state.  This 
requires simulations that incorporate all possible perceived 
states that could influence the plan outcomes.   
 We have discussed some basic examples of modeling 
errors on preconditions and effects.  For expressive 
language elements such as activity decomposition (as 
opposed to the abstractions mapping plan actions to 
sequences of simulator commands) and parameter 
dependency functions, how can errors and fixes be 
automatically identified? 
 Relaxing other assumptions may not pose difficult 
research challenges but can change the nature of the 
system capability.  For example, if the simulator or system 
(e.g. spacecraft) does have defects, then discrepancies that 
are inconsistencies between planned and executed behavior 

may now be (in addition to modeling errors) indications of 
those system defects.  So the IMDE now can identify 
simulator and system defects and validate them against the 
planner.  Thus, the IMDE may more generally be designed 
for validating multiple systems against each other.  This 
validation is especially important for interactions between 
autonomous spacecraft subsystems (such as an onboard 
planner or a guidance, navigation, and control system). 
 Another assumption was that the simulator is a black 
box. One option is to treat the effects of an action as 
properties that are input to a model checker, which is used 
to directly analyze the simulation model. The System-
Level Autonomy Trust Enabler (SLATE) validates a 
complete model of the system and its operation, 
incorporating device, control, execution, and planning 
models (Boddy et al., 2008).  The conventional approach 
of building a model only at an abstract level requires 
extensive testing of different scenarios and could only be 
guaranteed to work if all possible scenarios are tested.  
SLATE only requires testing of individual behaviors 
whose performance envelopes are incorporated into the 
model.  Since the model of the system is complete, SLATE 
can prove system-level properties as model checking does. 
 Another strategy for validating plan abstractions (in 
particular, those of hierarchical plans) is to summarize the 
potential constraints and effects of the potential 
decompositions of each abstract action in the model 
(Clement et al., 2007).  A planner can use this summary 
information to create a plan whose actions are detailed to 
different levels necessary to conclude that all further 
refinements of the plan are either valid or invalid.  Like 
SLATE, summary information validates higher level 
actions composed of more detailed validated actions.  
Summary information differs in that abstract actions retain 
choices of refinement for flexibility of execution, while 
abstract actions in SLATE are robust to uncertain system 
behavior. Instead of validation through testing like SLATE 
and the IMDE, summary information relies on an accurate, 
detailed model and, thus, applies only to white box 
simulation, similar to model checking approaches. 
 A more aggressive approach is to automatically abstract 
the simulation model to create the planner model, i.e. 
augment the approach of itSimple (Vaquero et al. 2007) to 
translate more expressive models to declarative planning 
languages.  Automating such translations requires a deep 
understanding of the semantics of the simulation language 
and may not be feasible for all simulation approaches. 

Preliminary Proof of Concept 
We have implemented a simple simulator and planner to 
explore the challenges of building an IMDE.  The system 
provides a two-dimensional slew example and a simple 



surface explorer (e.g., rover) example.  The system 
manages a simulator (implemented with ASPEN, Chien et 
al., 2000) and a planner (EUROPA, Frank and Jónsson, 
2003) using an enhanced Eclipse IDE.  Simple file formats 
are used for initial state, simulator commands, output, and 
executions.  A Java library translates these files, supports 
abstraction specifications, and fulfills the Refinement and 
Abstraction Engine roles.  Currently, the system only 
detects model errors from single plan simulations. 

Conclusion
The maturation of model-based planning provides an 
opportunity to improve the state of the art in planning 
applications.  But, the improvement requires spacecraft 
engineers to build and validate planning models that 
represent complex constraints derived from diverse 
information sources.  This paper hypothesizes that an 
Interactive Model Development Environment could 
overcome many of the associated challenges, providing 
features to prevent, catch, and repair model errors. While 
the technologies described above support the described 
IMDE features, there remain significant research 
challenges to achieve the overall vision: 

How can a complete but tractable space of test cases be 
identified for activity model validation? 
Can a single test case contribute to the validation of 
multiple model elements? 
How can errors in different modeling language features, 
command refinement, and data abstraction be clearly 
identified based on simulation output of these tests? 
What are the features of a learning problem for 
classifying an error? 
How can suggested fixes be generated for these errors? 
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