
The Challenge of Grounding Planning in Simulation with an Interactive
Model Development Environment

Bradley J. Clement*, Jeremy D. Frank**,
John M. Chachere***, Tristan B. Smith+ and Keith J. Swanson**

*Jet Propulsion Laboratory, California Institute of Technology ***SGT Inc, +MCT Inc., **NASA Ames Research Center
{FirstName.MiddleInitial.LastName}@nasa.gov

Abstract
A principal obstacle to fielding automated planning systems
is the difficulty of modeling. Physical systems are modeled
conventionally based on specification documents and the
modeler’s understanding of the system. Thus, the model is
developed in a way that is disconnected from the system’s
actual behavior and is vulnerable to manual error. Another
obstacle to fielding planners is testing and validation. For a
space mission, generated plans must be validated often by
translating them into command sequences that are run in a
simulation testbed. Testing in this way is complex and
onerous because of the large number of possible plans and
states of the spacecraft. Though, if used as a source of
domain knowledge, the simulator can ease validation. This
paper poses a challenge: to ground planning models in the
system physics represented by simulation. A proposed,
interactive model development environment illustrates the
integration of planning and simulation to meet the
challenge. This integration reveals research paths for
automated model construction and validation.

Introduction
A model-based system is software typically for analyzing
or optimizing another system that it models in some
representation language. There are several applications
that have benefited from using model-based planners. But,
there are long-standing, fundamental problems in applying
automated planning to physical systems: models are
abstractions that are disconnected from the physical system
(reducing accuracy) and limited in representation
(increasing complexity). Brooks remarked, “Explicit
representations and models of the world simply get in the
way. It turns out to be better to use the world as its own
model” (1991). The successes of model-based applications
dull this point, but developing a model that is sufficient for
a real application can be a painful struggle, especially if the
modeling language is missing basic features like numeric
state variables, in which case the language can seem to
“get in the way.” While languages have become more
expressive, algorithms that parse them do not scale well,
and detailed modeling may require too much effort.
Abstraction has its advantages! So, can existing planning
systems somehow use “the world” as their model?

 That is the challenge: to ground an automated planner in
system physics (“the world”) and thus simplify model
development, verification, and validation. Space missions
often develop simulation testbeds that serve as ground truth
for the system and can be automated to evaluate test cases
in batches. So, one approach to meeting the challenge is to
help automate model development and testing by
integrating the planner and simulator.
 We first describe a sample activity to show the
complexity of translating diverse information sources into
different elements of a declarative domain model. We then
explain how prior work in verification and validation does
not address this problem. We propose an Interactive Model
Development Environment (IMDE) to simplify the
construction, validation, and maintenance of automated
planning systems with help from a simulator. The majority
of the paper describes IMDE functions and architecture.
We discuss both current and near-term technologies that
can be used to build such an IMDE and mention progress
on a proof-of-concept implementation. We conclude with
research goals that could help produce valuable mission
planning technologies.

Model Development Challenges
As discussed above, fielding model-based planning
applications is challenging because typical modeling
processes are complex and error-prone and because the
combinations of possible test scenarios can seem as
overwhelming as testing the entire system being modeled.
 Originally planning languages and algorithms used only
Boolean state variables. Such variables are generally
impractical for representing time, location, and other
numerical states. Planning languages are more expressive
now (Howey et al. 2004, Fox and Long, 2003) but their
limitations still force inelegant workarounds that make
system models complex. Modeling choices can strongly
influence the performance of automated planning. So,
performance requirements can spur model revisions that
increase complexity further. This complexity compounded
by human error and lack of information about the modeled

system’s behavior can produce inconsistencies with the
model and the modeled system. Identifying and fixing
these inconsistencies can require significant work.
 To make the discussion concrete, consider the difficulty
of representing an activity for changing a spacecraft’s
attitude (its 3-dimensional orientation).

Example activity model of spacecraft slewing
(:durative-action slew
 :parameters (?from – attitude
 ?to - attitude)
 :duration (= ?duration 5)
 :condition
 (and
 (at start (pointing ?from))
 (at start (cpu-on))
 (over all (cpu-on))
 (at start (>= (sunangle) 20.0))
 (over all (>= (sunangle) 20.0))
 (at start (communicating))
 (over all (communicating))
 (at start (>= (batterycharge) 2.0)))
 :effect
 (and
 (at start (decrease (batterycharge)2.0))
 (at start (not (pointing ?from)))
 (at end (pointing ?to))))

The PDDL above specifies a spacecraft attitude change
activity. The activity model is more abstract than a typical
simulator’s, which would use the spacecraft's command
set, lighting conditions (a function of the orbit), dynamics
of slewing the spacecraft, communication asset locations,
spacecraft power utilization, and battery performance.
Typically, extracting knowledge from the simulator to
configure the planning system is manual, inefficient and
error-prone. The modeler may have a lot of questions:

How do planner model attitudes relate to real spacecraft
operations’ continuous attitudes? For example, does it
suffice to represent a deep-space craft with camera
directional sensors using a discrete valued attitude
variable with values such as to-Earth (for deep-space),
Earth-nadir (for Earth orbits), Sun-pointing (for solar
power generation), and others for sets of navigation
guide stars? How does data from the inertial
measurement unit map to these discrete directions?
How does the planner model battery discharge? How
can the model conservatively estimate the battery energy
consumed by subsystems for different possible system
states? For example, does temperature affect power
usage? How is a cap on battery capacity modeled to
avoid overfilling? How is solar recharging modeled?
What drives slew duration? Is it proportional with
angular slew distance? Will a slew always follow the
shortest rotation? Must it avoid pointing instruments at
the sun? What determines the choice of control system
(reaction wheels, thrusters, or torque rods)?
How is reaction wheel momentum dumped?

Along what axes can the spacecraft slew while
communicating? conducting science measurements?
recharging the battery? changing trajectory?
What are the communication coverage requirements?
What information is needed about the spacecraft orbit,
availability of ground communication assets, and the
spacecraft antenna type and configuration? When do
ground stations require communications to monitor
trajectory changes or other related activities?
How does the abstract slew correspond to one or more
sequences of spacecraft commands? Are there setup and
teardown activities? Is the slew for each axis performed
separately to avoid risk of concurrent interactions?

Before flight, the orbit, attitude, engineering subsystem
specification, and simulations can change frequently.
These changes require efficiently reconfiguring the activity
planner. For example:

New targets or navigation aids require updating the set
of discrete attitudes.
Changes in sequences can cause a change in attitude
control system performance, leading to activity changes.
Any power-using subsystem that changes performance
(e.g., attitude control system or communication) will
change power consumption. If planning determines
mission objectives are infeasible, a need to slew faster
could also increase power consumption
Changing orbit, communication coverage plan, or
antenna configuration may change the activity.
Changing flight software (or the uses of major spacecraft
operating modes) might require changing the commands
that affect attitude.

Verification, validation, and model checking
Validating the planning model (not just a plan) is a central
challenge to automating model development. The planning
system is partly a plan verification system because it
checks constraints on system states that the plan’s activities
affect. However, validating the plan additionally requires
validating that the effects are realized as expected.
Validating the planning model requires validating all plans
that the planner generates or accepts as feasible.
 Model checking may detect violations of formal
properties by the planning model or individual plans “in
isolation” (e.g., Howey et al., 2004, Brat et al., 2008, Long
et al., 2009, Raimondi et al., 2009, Cesta et al., 2010), but
our goal is to validate the model against the simulator.
Simulation of activities in the planning model can directly
indicate problems, for example, an unrealized effect of an
activity or a system fault. Model checking cannot
substitute for this functionality without using a complete
model of the simulator. Current model checking systems
have the same representation and scaling problems as

planning, so a detailed model (which rarely exists anyway)
would likely be unusable.

Interactive Model Development Environment
We now describe an approach that integrates planning and
simulation in order to help automate model development
and validation in the context of a hypothetical IMDE. We
make assumptions that simplify the discussion, describe
IMDE design features and architecture, and outline a
concept of operation for modeling with the IMDE.

Assumptions
The following assumptions simplify stating the challenge
in the IMDE context and also indicate additional
challenges addressed toward the end of the paper.

The simulator input includes a list of time-tagged
commands.
The simulator runs deterministically.
The simulator reports any errors (undesirable behavior).
The system (spacecraft) and simulator are defect-free.
The simulator is a black box (the user can neither change
nor inspect its code and models)
The simulator outputs time-tagged value samples of
system state variables.
Formal flight rules define mission constraints that are
verifiable with the simulator output.
Every plan that the planner sends to the simulator is
consistent with the planner’s model.
An action in the plan corresponds to a list of time-tagged
commands.
The planner is sound but not necessarily complete.

IMDE design features
The hypothetical IMDE could share many features of a
traditional programming language Integrated Development
Environment (IDE); An IMDE’s model corresponds to an
IDE’s code, plans correspond to test cases, and the
simulator corresponds to the computer. One distinctive
IMDE function is the generation of test cases to aid model
validation. Another is the generation of suggestions on
how to fix modeling errors. In the traditional IDE, this is
similar to suggesting code fixes for program run failures.
Following sections discuss validation and model fixes.
 Figure 1 shows the system architecture of the propsoed
IMDE. The Model Editor provides traditional IDE
functions. The Simulation API Browser provides model
creators access to the simulation API. With the Abstraction
Editor a user documents how plan model building blocks
(objects, states, timelines, actions, constraints) relate to
data and commands in the simulation API, thus providing
traceability for detecting model problems. These
abstractions are the semantic glue connecting the planner

to the “the world”/simulator. The Abstraction and
Refinement Engines integrate the planner and simulator.
The Refinement Engine transforms a plan into simulator
command input. The Abstraction Engine transforms
simulator output into an actual/simulated execution for
comparison with the expected/planned execution. These
executions are time-tagged actions and state variable
values in the language of the planner. The Validator
identifies discrepancies between the two executions, errors
reported by the simulator, and any planning model
constraint violations, some of which the simulator may not
check (e.g., flight rules). A Plan Viewer (not shown)
comparatively displays the simulated and planned
executions (e.g., in a Gantt chart). The Plan Viewer
(and/or an Error Viewer) visualizes discrepancies between
the executions and highlights those that indicate modeling
errors. Finally, the Fixer suggests model changes that may
eliminate one or more errors seen in the current and past
simulations of different plans. We explain how to detect
errors and make suggestions after describing the IMDE
concept of operation.

Figure 1: Hypothetical IMDE architecture.

Model Editor

Planner

Simulator

Abstraction
Editor

Fixer

Refinement
Engine

Validator

model

plan

commands

state
timelines

simulated
execution

errorssuggestions

abstractions

Abstraction
Engine

Simulator
API Browser

commandsdata

Concept of operation
An IMDE user may start with an empty or existing
planning domain model. Depending on the modeling
language, an edit to the model may add, change, or remove
actions, state variables, constraints, and effects (or their
associated object types and sets). The user may create and
edit abstractions to ground the model in simulator
elements. A simulation interface exposes these elements,
including commands and system state variables. These
edits initiate the following basic workflow.

1. The user edits the model, or
2. the user edits abstraction by either

a. copying variables from the simulator interface to
the model (e.g. sunangle),

b. abstracting variables in the model (e.g.
(pointing Earth) is true in the planner if the
simulator’s xyz attitude is for each axis within 1
degree of the attitude to point directly at Earth),

c. copying a simulator command to the model as an
action (e.g. turn on CPU), or

d. abstracting a command sequence to model an
action (e.g. command sequence to slew spacecraft)

3. The IMDE generates possible initial states and plans
and tests each by
a. translating the initial state and plan into simulator

commands,
b. running the simulator with those commands,
c. translating simulator output to an execution,
d. checking the execution for violations of constraints

in the planning domain model, and
e. checking for discrepancies between planned and

simulated executions.
4. The IMDE analyzes test results to suggest changes to

the planning model that could fix discrepancies.
5. The user assesses planned and simulated executions,

their constraint violations, their discrepancies, and
suggested fixes.

6. Repeat.

 The idea is that when the user edits the model, in the
background the IMDE generates and simulates different
plans to search for discrepancies indicating modeling
errors. The user can be made aware of these errors even
while editing (much like syntax errors in an IDE), and
when the user is ready to see what is in error, the IMDE
may already have suggested fixes for the user to select.

Translating plan information as abstraction and
refinement
The previous workflow uses abstractions heavily. For
example, in step 3a the Refinement Engine may translate
one slew(?from,?to) action in the plan into three

ordered subsequences of simulator commands to rotate the
spacecraft around each of its three axes. In step 2c and 2d,
the user specifies this abstraction as an action
decomposition, similar to hierarchical plan decomposition
(Clement et al., 2007).
 Another abstraction type for data specifies how state
variables in the planning model relate to those in the
simulator output. For example, an abstraction could map
the simulator xyz spacecraft attitude to a discrete
(pointing ?target) planner predicate, with
?target either Earth, Sun, or SomewhereElse.
An abstraction function could specify that (pointing
Earth) is true if the simulator xyz attitude for each axis
is within 1 degree of pointing the transceiver to the Earth’s
center. In general, an abstraction could be any function of
a set of time-varying variables that calculates the time-
varying values of some variable.
 When the Refinement Engine translates initial state and
plan information into simulator commands using these
abstractions in steps 2a and b, some data abstractions may
need to be reversed. For example, translating a plan’s
slew(Sun,Earth) action into simulator commands
would translate the Sun and Earth symbols to the
corresponding xyz attitudes for pointing to the targets.
 The Abstraction Engine checks for discrepancies with
the planned execution and helps identify modeling errors
by translating simulation results into execution information
in the planner language using the abstractions in Step 3c.
The abstractions provide the time-varying planner state
values, but another step is needed to construct the
execution that explains these values. Our assumptions
make this relatively simple, but in general it can be a
difficult state estimation optimization problem.

Identifying modeling errors
Modeling errors are indicated by errors explicitly reported
by the simulator and by plan constraint violations on the
simulated execution that do not occur in the planned
execution (a discrepancy in constraint violations). For
example, in testing the slew(Sun, Earth) action, the
simulator might report an error from the fault management
system because the computer had not yet been booted
when commands were sent to the reaction wheels (a flight
rule violation). This is an error in the planning model
because the slew action lacked a necessary precondition
that the computer be booted. As another example, the plan
test case might include a goal (or constraint) (pointing
Earth) to check that the effect of a slew is achieved.
The simulator output could be error-free and translate back
to an execution where (pointing Earth) was never
achieved, failing the goal. This could be the result of the
plan containing another overlapping slew command that

commanded the spacecraft to retarget the slew. In this case
the modeling error was in allowing overlapping slews.
 This simple specification for identifying modeling errors
applies generally to different kinds of errors. For example,
how would an error in the timing of a slew be detected? If
the model specified a fixed duration for slew, the test plan
still only needs a constraint that (pointing ?to) be
true at the end of the slew activity. If the slew takes
longer than expected, then the constraint will be violated in
the simulated execution.
 Discrepancies between the planner and simulator need
not be modeling problems. Defining the planning states as
abstractions of the simulator’s states could naturally lose
information. For example, the planning model could
represent battery depletion as instantaneous while the
simulation represents depletion as gradual. Discrepancies
will probably manifest between the planned and simulated
battery levels. But, planning the battery levels
conservatively could avert simulation failures. The user
may choose to omit specific discrepancies from reporting
(as with waiving constraint violations in mixed initiative
planning systems, Aghveli et al. 2007). However, the
discrepancy might indicate an efficiency improvement
opportunity: a more detailed battery depletion model could
enable scheduling more activities.
 These discrepancies of inefficiency could be detected by
running plans that have constraint violations through the
simulator and seeing if the violation is occurs in the
simulated execution.

Generating plans to validate the model
The reason for generating different plans to test (step 3) is
to validate that the model will work for all situations.
Validating the model requires validating all possible plans
that can be constructed from the model. In general, there
may be an infinite number of possible plans, but there may
be a manageable number that is enough to validate a single
part of the model.
 For example, if the user wants to ensure that the
(pointing ?to) effect is always satisfied at the end of
slew(?from,?to), then a complete space of plans to
test would combine all possible initial attitudes, slews for
all target attitudes (slew from each attitude to each other
attitude), all possible additional actions (slews from each
target to each other target), and the different temporal
orderings of those other actions with respect to
slew(?from,?to).
 It is possible to generate all of these plans with special
purpose code, but the planner itself may be leveraged to
accomplish this. Instead of generating all combinations,
incorporate this parameterization into a planning problem:
what initial state and ordering of instantiations of
slew(?from,?to) will achieve (pointing ?to) at

the end? The set of valid solutions to this planning problem
is the test suite.
 Now, it is expected that multiple simulations could map
to a single plan. For example, there are an infinite number
of xyz attitudes that translate to (pointing Earth).
So, why not test all possible simulations instead of all
possible plans? If plans are meant to be the only
mechanism for generating command sequences for the
spacecraft, the other simulations will never occur because a
plan only translates to one set of commands resulting in
one deterministic simulation. On the other hand, the initial
state is not dependent on actions in the plan, so the
complete space of test cases would include the infinite
number of attitudes that translate to (pointing
Earth). In this case, conventional test coverage
techniques may still be necessary.
 Another reason to generate simulations instead of plans
may be that the model has just been started, and many
actions have yet to be modeled, so the necessary plan-
based test cases to validate the first modeled action would
be insufficient. Thus, generating simulations based on the
simulator interface specification (using simulator
commands instead of planner actions) would be useful and
more robust to model changes. It may also be better to
generate simulator-based test cases when there are many
actions in the planning model. If activities are defined for
many combinations and orderings of simulator commands,
then the space of plans necessary to validate an action
could be greater than the space of simulations due to
repetition of simulator commands in a combination of
actions.
 Again, it may be possible to cleverly scope the
validation to reduce the number of sequences tested. For
example, test cases including two slews following the slew
to be validated should find the same errors as those test
cases with only a single following slew. Thus, a tractable
number of test cases may be identified for validating an
action in a model. This test coverage problem is known to
be quite difficult and, thus, part of the challenge.
 The tractability of validating the entire model depends
on that of individual actions. Validating each action in
isolation is enough to validate the entire model since the
soundness of the planner guarantees combinations of
actions.

Suggesting changes to the model
When the IMDE runs a batch of plans through the
simulator, some may result in simulator errors and some
may result in planning constraint errors. These indicate
that there are modeling errors, but the modeler may not be
able to deduce the actual mistake by looking at any one
execution. For example, suppose the slew was never
executed because the CPU was never turned on, resulting

in a simulation error flag. There would be a violation of
(pointing Earth) in the simulated execution, but no
information in the output ties the safing of the spacecraft
with the state of the computer. So, the modeler would have
to know the spacecraft (and simulator) very well to guess
the problem after seeing it in a single run.
 By finding relationships between plan/state attributes
and simulator/discrepancy errors, the IMDE can generate
plausible suggestions for fixing the model. For example, if
a complete set of test cases showed that the slew failed
every time that the computer was not booted, a machine
learning classifier or data mining algorithm could identify
the pattern. Then, the IMDE could suggest abstracting the
computerMode variable in the simulator interface to a
cpu-on predicate in the planning model and add the
predicate as a precondition to slew. Other suggestions
include adding a constraint that a turnOnCpu action
always precedes slew or adding a simulator command to
the slew abstraction/decomposition to bootCpu. These
suggestions from the IMDE Fixer component (see Figure
1) could include changing constraints on an action, adding
state variables, or creating new actions. Similar
suggestions could be made to fix the abstractions.
 The challenge of generating suggestions may be in
framing the learning problem. Plans have variable
numbers of actions, so there is not an obvious feature set
over which to learn. In addition, the modeler may want
suggestions in terms of complex functional relationships of
multiple variables. For example, the desired fix may be to
avoid exhausting memory storage by adding a constraint
that the sum of durations of all communications activities
in a day must be greater than the sum of data collected
multiplied by a particular constant. The number of
functional relationships that may be part of a feature set of
a learning algorithm could easily be intractable. On a
positive note, the modeler may be able to deduce the
needed fix with the help of overly-specific suggestions
learned from a limited set of features.

Technology Foundations
While the ultimate vision of the IMDE has yet to be
achieved, many component technologies have been built.
This section describes some of these technologies as well
as research activities that enable the goal.
 The itSimple tool (Vaquero et al., 2007) is a plan
domain modeling environment very similar to the proposed
IMDE. Users of itSimple can build static models of
objects, actors, and relationships between them in a
specialization of UML and dynamic models of how states
of the objects are allowed to change using Petri Nets (an
encoding of state charts); the Petri Net model acts as a
simulation. The resulting models are automatically

translated by itSimple to PDDL, after which the users can
continue refining the resulting models. A distinct
difference from the IMDE approach is the assumed access
to the simulator model (white-box simulation).
 The Procedure Integrated Development Environment
(PRIDE) (Izygon et al., 2008) is a procedure authoring
technology prototype that can be used to create procedures
for execution by flight controllers and crew. PRIDE
presents procedure authors with a command and telemetry
database; users can drag commands and telemetry
references into a plan directly from the command and
telemetry database GUI. PRIDE provides access to either
state-chart simulations or high-fidelity simulations that the
procedure writer can use to manually check procedures for
correctness. Procedures can also be automatically verified
by means of translation to Java and the use of model
checking software (Brat et al., 2008). The use cases for
creating procedures are quite similar to the assumptions
made here. However, there is no abstraction mapping, and
procedures lack formalisms needed for planning.
 The Data Abstraction Architecture (DAA) (Bell et al.,
2010) is designed to address the problem of transforming
spacecraft or space system telemetry into useful
information for operators (be they flight controllers or
crew). The system allows system operators to write
common data transformations using a GUI; the
transformations are then executed by an engine that accepts
telemetry as input, and produces more intuitive information
as output. The DAA framework is well suited to editing
data abstractions for the IMDE, but it would need to be
extended to capture transformations of plan actions into
simulator commands.
 VAL takes steps toward the Fixer IMDE element by
validating that a specific plan is indeed a solution to a
planning problem that may be specified with continuous
effects, including limited forms of time-dependent change
on numerical state variables (Howey, et al., 2004). VAL
can also advise modelers how to fix a plan. The goal
explored here is how to validate that all plans execute as
intended and suggest fixes to the model, not just the plan.
Furthermore, the approach in VAL would have to apply to
simulated executions.
 The LOCM system (Cresswell et al. 2009) learns
planning domain models from sets of example plans. Its
distinguishing feature is that the domain models are
learned without any observation of the states in the plan or
about predicates used to describe them. This works
because the objects are grouped into sorts, and the behavior
available to objects of any given sort is described by a
single parameterized state machine. LOCM is the latest in
a number of plan domain learning systems that could be
employed to abstract black-box simulations into domain
models as part of the Fixer in our proposed IMDE.
However, doing so may require learning abstractions from

simulated command sequences, which plan domain
learning systems presently do not do.
 Techniques for ordering test cases to expose errors more
quickly can also be leveraged. Instead of generating test
plans by systematically trying each permutation of plan
features, test cases may be chosen that are believed to more
likely discover a flaw based on results of past cases. The
Nemesis test system has had success with this by using a
genetic algorithm to smartly choose test cases (Barltrop et
al., 2010). A complementary strategy is to use coverage
techniques to quickly sweep across the landscape of test
cases and learn combinations of features to more quickly
converge on a formula describing the conditions under
which a flaw appears (Barrett, 2009). This can be used to
converge quickly on suggestions to fix modeling errors.

Challenges in relaxing the assumptions
The usefulness of the described IMDE may still be
insufficient because of limiting assumptions. We describe
those we deem important and their associated challenges.
 It is possible that an action may correspond to multiple
commands, a loop, or any arbitrary function generating
commands. As long as this function is a legitimate
simulator input, then this is not a difficult problem.
 Many systems have uncertain behavior, for example,
stemming from attitude and temperature control. If the
simulation testbed can be invoked in a way that explores
different outcomes, then a single plan now corresponds to
multiple (possibly infinite) test cases for which the model
should be validated. This presents an additional difficulty
in determining a tractable number of test cases sufficient
for validating the model. It also presents a problem of how
to model the activity correctly; if the action duration varies
between 30 and 40 seconds, what is the best duration value
to use? Moreover, constructing the simulated execution
from state values may not be obvious and, in general, can
be a difficult state estimation problem!
 In addition, the spacecraft may be able to execute
sequences conditioned on the perceived system state. This
requires simulations that incorporate all possible perceived
states that could influence the plan outcomes.
 We have discussed some basic examples of modeling
errors on preconditions and effects. For expressive
language elements such as activity decomposition (as
opposed to the abstractions mapping plan actions to
sequences of simulator commands) and parameter
dependency functions, how can errors and fixes be
automatically identified?
 Relaxing other assumptions may not pose difficult
research challenges but can change the nature of the
system capability. For example, if the simulator or system
(e.g. spacecraft) does have defects, then discrepancies that
are inconsistencies between planned and executed behavior

may now be (in addition to modeling errors) indications of
those system defects. So the IMDE now can identify
simulator and system defects and validate them against the
planner. Thus, the IMDE may more generally be designed
for validating multiple systems against each other. This
validation is especially important for interactions between
autonomous spacecraft subsystems (such as an onboard
planner or a guidance, navigation, and control system).
 Another assumption was that the simulator is a black
box. One option is to treat the effects of an action as
properties that are input to a model checker, which is used
to directly analyze the simulation model. The System-
Level Autonomy Trust Enabler (SLATE) validates a
complete model of the system and its operation,
incorporating device, control, execution, and planning
models (Boddy et al., 2008). The conventional approach
of building a model only at an abstract level requires
extensive testing of different scenarios and could only be
guaranteed to work if all possible scenarios are tested.
SLATE only requires testing of individual behaviors
whose performance envelopes are incorporated into the
model. Since the model of the system is complete, SLATE
can prove system-level properties as model checking does.
 Another strategy for validating plan abstractions (in
particular, those of hierarchical plans) is to summarize the
potential constraints and effects of the potential
decompositions of each abstract action in the model
(Clement et al., 2007). A planner can use this summary
information to create a plan whose actions are detailed to
different levels necessary to conclude that all further
refinements of the plan are either valid or invalid. Like
SLATE, summary information validates higher level
actions composed of more detailed validated actions.
Summary information differs in that abstract actions retain
choices of refinement for flexibility of execution, while
abstract actions in SLATE are robust to uncertain system
behavior. Instead of validation through testing like SLATE
and the IMDE, summary information relies on an accurate,
detailed model and, thus, applies only to white box
simulation, similar to model checking approaches.
 A more aggressive approach is to automatically abstract
the simulation model to create the planner model, i.e.
augment the approach of itSimple (Vaquero et al. 2007) to
translate more expressive models to declarative planning
languages. Automating such translations requires a deep
understanding of the semantics of the simulation language
and may not be feasible for all simulation approaches.

Preliminary Proof of Concept
We have implemented a simple simulator and planner to
explore the challenges of building an IMDE. The system
provides a two-dimensional slew example and a simple

surface explorer (e.g., rover) example. The system
manages a simulator (implemented with ASPEN, Chien et
al., 2000) and a planner (EUROPA, Frank and Jónsson,
2003) using an enhanced Eclipse IDE. Simple file formats
are used for initial state, simulator commands, output, and
executions. A Java library translates these files, supports
abstraction specifications, and fulfills the Refinement and
Abstraction Engine roles. Currently, the system only
detects model errors from single plan simulations.

Conclusion
The maturation of model-based planning provides an
opportunity to improve the state of the art in planning
applications. But, the improvement requires spacecraft
engineers to build and validate planning models that
represent complex constraints derived from diverse
information sources. This paper hypothesizes that an
Interactive Model Development Environment could
overcome many of the associated challenges, providing
features to prevent, catch, and repair model errors. While
the technologies described above support the described
IMDE features, there remain significant research
challenges to achieve the overall vision:

How can a complete but tractable space of test cases be
identified for activity model validation?
Can a single test case contribute to the validation of
multiple model elements?
How can errors in different modeling language features,
command refinement, and data abstraction be clearly
identified based on simulation output of these tests?
What are the features of a learning problem for
classifying an error?
How can suggested fixes be generated for these errors?

Acknowledgements
We gratefully acknowledge the assistance and comments
of members of the MER, LCROSS and LADEE mission
operations and flight software teams, as well as members
of the Johnson Space Center Mission Operations
Directorate, in formulating this work. Some of the
research described in this paper was performed by the Jet
Propulsion Laboratory, California Institute of Technology.
Reference herein to any specific commercial product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government, or the Jet
Propulsion Laboratory, California Institute of Technology.
© 2011 California Institute of Technology. Government
sponsorship acknowledged.

References
Aghevli, A., Bachmann, A., Bresina, J.L., Greene, J., Kanefsky,
R., Kurien, J.,McCurdy, M., Morris, P.H., Pyrzak, G., Ratterman,
C., Vera, A., Wragg. S., Planning Applications for Three Mars
Missions. Proceedings of the International Workshop on
Planning and Scheduling for Space. Baltimore, MD, 2007.
Barltrop, K., Clement, B., Horvath, G., and Lee, C. Automated
Test Case Selection for Flight Systems using Genetic Algorithms.
Proceedings of the AIAA Infotech@Aerospace Conference, 2010.
Barrett, A. and Dvorak, D. A Combinatorial Test Suite Generator
for Gray-Box Testing, IEEE SMC-IT 2009.
Scott Bell, David Kortenkamp, Jack Zaientz. A Data Abstraction
Architecture for Mission Operations. In Proc. of the International
Symposium on AI, Robotics, and Automation in Space, 2010.
Boddy, M., Carpenter, T., Shackleton, H., Nelson, K. System-
Level Autonomy Trust Enabler (SLATE), In Proc. of the U.S. Air
Force T&E Days, AIAA, Los Angeles, CA, Feb, 2008.
Brat, G., Gheorghiu, M, , Giannakopoulou, D., “Verification of
Plans and Procedures,” In Proc. of IEEE Aerospace Conf., 2008.
Brooks, R. A. Intelligence without representation. Artificial
Intelligence. 47, pp. 139–159, 1991.
Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.
Validation and Verification Issues in a Timeline-Based Planning
System. Knowledge Engineering Review, 25(3): 299-318, 2010.
Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt,
B., Mutz, D., Estlin, T., Smith, B., Fisher, F., Barrett, T.,
Stebbins, G., & Tran, D. ASPEN - Automating space mission
operations using automated planning and scheduling. In Proc.
SpaceOps, 2000.
Clement, B., Durfee, E., Barrett, A. Abstract Reasoning for
Planning and Coordination. Journal of Artificial Intelligence
Research, vol. 28, 453-515, 2007.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2012.
Acquiring planning domain models using LOCM. Knowledge
Engineering Review, to appear.
Fox, M. & Long, D. (2003), PDDL2.1: An extension of PDDL
for expressing temporal planning domains, Journal of Artif cial
Intelligence Research 20, 61–124.
Frank, J. and Jónsson, A. Constraint-Based Interval and Attribute
Planning. Journal of Constraints, Special Issue on Constraints
and Planning, 2003.
Howey, R. and Long, D. and Fox, M. VAL: automatic plan
validation, continuous effects and mixed initiative planning using
PDDL. In: 16th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2004), 15-17, Nov 2004.
Izygon, M., Kortenkamp, D., Molin, A., “A Procedure Integrated
Development Environment for Future Spacecraft and Habitats,”
Space Technology and Applications International Forum, 2008.
Long, D., Fox, M., and Howey, R. Planning Domains and Plans:
Validation, Verification and Analysis. In Proc. Workshop on
V&V of Planning and Scheduling Systems, 2009.
Raimondi, F., Pecheur, C., and Brat, G. PDVer, a Tool to Verify
PDDL Planning Domains. In Proc. Workshop on Verification and
Validation of Planning and Scheduling Systems, ICAPS, 2009.
Vaquero, T., Romero, V., Sette, F., Tonidandel, F., Reinaldo
Silva, J. ItSimple 2.0: An Integrated Tool for Designing Planning
Domains. Proceedings of the Workshop on Knowledge
Engineering for Planning and Scheduling, 2007.

