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This paper presents a coupled elastic-thermal dynamic model and a quasi-static strategy 
on the analysis of the reflector dynamics in the space mission. The linearized model, its 
natural frequencies and mode shapes are then derived upon the nonlinear static equilibrium 
of the structure. The numerical example is provided to fully adapt the strategy and 
investigate the dynamic behaviors of the structure. Finally the proposed method is applied 
on the sample of the deployable mesh reflector and the simulation results are presented. The 
research work delivered in the paper will be used to design the feedback surface controller 
in future.   

I. Introduction 
N the past decades, the large deployable mesh reflector has brought continuously interest in research and 
industry. It has been used in many different projects for very broad space applications, such as mobile 

communications, remote sensing, global broadcasting, satellite communications, and climate forecasting. While 
many successful researches [1 - 4] have been conducted on developing the deployable mesh reflectors, due to 
the higher and higher mission requirements from NASA and industry, the larger reflectors with smaller surface 
error are still in the urgent demand.  
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Figure 1. The deployable mesh reflector in consideration 
 

Although it has been a challenge to increase both size and surface accuracy at the same time, the previous 
studies [5, 6] have suggested that the active control on the shape of structure should be introduced in the 
development of deployable space reflectors. To ultimately develop an active surface control technique, the 
authors’ previous works have delivered an optimal design of initial profile and a nonlinear static model of mesh 
reflectors [7, 8]. The work in this paper is the continued research following the previous paper [9]. According to 
the structural dynamic theories [10 - 13], it is to analyze the dynamics of the mesh reflector in the space by 
considering the elastic-thermal properties and to serve the controller design purpose for improving the 
performance of the reflector’s surface. 
 The mesh reflector structure discussed in this research is shown in Figure 1. The reflector has a fixed 
boundary outside and the working surface is constructed by the nodes and the truss elements. With the tension 
ties connecting to the nodes, the vertical external loads can be provided. In the second section of the paper, 
following the modeling formulation in Ref [9], a nonlinear model on coupled thermal-elastic dynamics is 
proposed. In the third section, the nonlinear model is linearized on the nonlinear static equilibrium and the 
dynamic properties are ready to obtain. In the fourth section, a quasi-static strategy is suggested for the analysis 
of in-space dynamics of reflectors. In the simulation and discussion section, the model and the strategy 
presented in the paper are implemented on two study cases, and the numerical results are presented before the 
paper is summarized and concluded. 

II. A Nonlinear Model on Coupled Thermal-elastic Behavior 
 As it is mentioned above, besides investigating the nonlinear dynamic vibrations of structure, the dynamic 
distortion due to the temperature changes also need to be considered. To build up the model on the coupled 
thermal-elastic dynamics of the reflector, the model of single element is then first to discuss.  
 For a single truss element, the thermal strains therm under temperature changes is defined as 
 therm T  (1) 
where is the thermal coefficient of the material. Then the total strain of kth element of the structure is the 

summary of thermal strain ,therm k and elastic strain ,elast k  by assuming no expansions due to other factors such 

as piezoelectric effects, etc.: 
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Due to the in-space working environments of the reflector, the gravity is the ignored and the potential energy all 
comes from the elastic energy of the material. Similar to the derivation in Ref. [9], the elastic energy of single 
element under thermal effects is 
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with ,k elast kE to be Young’s module and , ,t kA s as the cross-section area at axial location s. If the same 

definitions of variables is used as in Ref. [9], such as d ky to be the deformed nodal coordinates of the kth 



element and c ky is the deformed coordinates of center of mass in Eq. (4), 
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hence we have the variation of the elastic energy is 
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Adapting the assumption that each element has negligible moment of inertia and no damping effects within 
structure, the variation of the kinematic energy and virtual work are the same with the Eq. (16) and (17) in Ref. 
[9], 
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where kM is the total mass of element, kF is the external force vector.  

 Applying extended Hamilton principle 
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the equation of motion for single element is 
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Considering the whole structure, the variation of elastic energy is obtained from Eq. (4), as 
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where defy is the global coordinate vector of all nodes. Therefore similar to the formulation in Ref. [9], the 

equation of motion under thermal load is written as 
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and Q is the external forces applied on the nodes. 

III. Model Linearization 
When developing the feedback controller, it is very common and useful to linearize the nonlinear model at 

the nonlinear static equilibriums. The static equilibrium of the model defy can be obtained from Eq. (12) by 



setting 0defy 0defy in Eq. (11), 
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In particular, considering the nonlinear equilibrium of a single element under the assumption of constant 
Young’s module, uniform cross-section in geometry and negligible Poisson’s effect, Eq. (12) can be rewritten as  
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From the elasticity theory, 
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Substitute Eq. (15) into Eq. (12), we have 
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which is the same with the equilibrium equation of element in Ref. [8] and is a proof on the correctness of our 

nonlinear model. The nonlinear static equilibrium defy can not be solved analytically in general, but the 

nonlinear solving algorithm proposed in the authors’ previous work [8] is able to numerically solve the Eq. (12) 
in an accurate and efficient manner. 

 Since def def defy y y , according to the perturbation techniques, Eq. (11) can be linearized as 

 def therm def thermM y K y Pydefy Kydef  (17) 

where 
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Comparing Eq. (11) , (17) with the models obtained in Ref [9] without any thermal effects, it can be seen that 
the coefficients of the second order derivative are the same, which reveals the fact that the thermal distortion 
does not affect the mass matrix. 
 Therefore the eigenvalue problem of the linearized model is to solve 
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where
i
is the eigenvector and the corresponding eigenvalue i is obtained from 
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Moreover, by adapting the analysis method in Ref [14], it is also able to indicate the ability to control the 
structure modes by different inputs. First rewrite the linear system Eq. (17) into the state space format,  

 x A x B ux A xA x  (22) 

in which 
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where u is the vector of linearized external forces and is considered as the input of system. Define Ai to be 

the ith eigenvalue of A and the vector jB is the input direction vector corresponding to the jth input of u .  

Then for each Ai and jB , the matrix in (24) can be formulated and the minimum singular value ij of each 

matrix will be calculated. Since A can have many eigenvalues and the system may have multiple inputs, we 
can generate a 2-D table of the minimum singular values ij , in which one dimension is Ai and the other one is 
the input element ju . According to the reference [14], the minimum singular values in the table indicate how 
much influence the different inputs ju have on controlling the different vibration modes of the structure. 

 A ji I A B  (24) 

IV. Quasi-static Strategy on the Space Mission 
 While the reflector is orbiting Earth in space, the amount of sunlight which shoots on the structure 
determines the surface temperature of the reflector. For one orbiting cycle, the range of the temperature 
variations could be from around 250K to 350K depending on the altitude of the different orbit, while the period 
time of each cycle varies from one hour to 24 hours. Therefore the speed of temperature variation is from 
around 0.004K/s to 0.07K/s, which can be considered very slow. By assuming the uniform temperature 
distribution on reflector elements, the temperature of the reflector gradually changes in a cycle and it is 
practicable and reasonable to treat the structural dynamic distortion under thermal variation as a quasi-static 
process. Hence, we propose the following strategy on the dynamic analysis of the deployable mesh reflector in 
space missions: 
 In the orbiting mission of the reflector, the dynamic thermal distortion is approximated as a quasi-static 
process. Each orbiting cycle is divided into multiple sections as each section experiences the same range of 



temperature variation.  
1) Static process: 

 Between different sections, the deformation of the reflector is treated in a purely static manner. Combining 
the deployment process, we further separate this static deformation into four steps which is shown in Figure 2. 
Before the reflector is deployed, it is folded in the spacecraft and has a virtual initial surface which the reflector 
will be deformed to under zero external forces. In this step, namely 0S , the reflector is in certain nominal 
temperature 0T when no thermal distortion occurs at each element of structure. The optimal design approach of 

the initial profile of the reflector can be found in the authors’ previous work [7]. 

 
Figure 2. Static process of the quasi-static strategy.  

Up-left: 0S ; Up-right: 1S ;Bottom-left: 2S ; Bottom-right: 3S  

 
 In the step of 1S , which is the deployment process, the proper external forces 1P which is predetermined, are 

applied on the nodes of the reflector and the deformation of the structure will generate the expected working 
surface. In this step, the reflector is still considered in the nominal temperature 0T . 
 However, as it is shown in the next step of 2S , the surface temperature 1T determined by the space 

environment where the reflector is deployed and by Sun’s ray on the surface, is always not the nominal 
temperature and the structure will statically distort under thermal loads into a new equilibrium with the external 
loads remain as 1P . 
 Finally, the external forces are adjusted in step of 3S to ensure the surface of the reflector deforms back to the 
desired working shape under the current surface temperature 1T . It should be noticed that the nodal coordinates 

of this new working surface may not be the same with the nodal coordinates in the desired surface, but both 
surface share the exact same shape, which will maintain the surface performance unchanged as it is originally 
designed. The nonlinear static model and the solving method for 1S , 2S and 3S have been delivered in authors’ 

previews research [8]. 
 During the orbiting mission, the reflector will experience 2S and 3S each time it moves from one section to 

another. When entering the next section, the surface temperature of the reflector is considered to change into a 
new constant, such as 1T  and it will deform under the thermal effects. Then in the step of 3S , with proper 
additional forces cP onto the previous loads 1P , the reflector deformed again and the surface is maintained in the 

designated shape. 



2) Dynamic process: 
 Inside every section, the temperature is considered to remain constant. Therefore we only consider the 
dynamics of the reflector due to mechanical vibrations and disturbance, while the dynamic behavior due to the 
actual temperature changes is ignored. Upon the nonlinear static equilibrium of deformation within each section 
which is calculated above, the linearized model proposed in this paper is applied on the structure and the 
dynamic analysis such as the natural frequencies and mode shapes is investigated based on this linear model and 
will provide the important guidance for the further design of feedback surface controller.  

V. Numerical Simulation and Discussion 
 In this section, a simulation for the deploying process and the orbiting mission is first carried out on a simple 
example of truss structure, which is also the guidance on the detailed procedure of the quasi-static strategy. Then 
the proposed strategy is applied on the sample of deployable mesh reflector with simulation results presented. In 
the first part, a simple truss is used as the study case and it has 6 nodes (3 are on the boundary) and 9 elements 
and the external forces are restricted in the vertical direction. Besides all the assumptions made in the section II 
and III, it is further assumed that each element has linear elasticity and uniform geometry along its axial 
direction without any Poisson’s effect for simplicity. Moreover, in the initial shape of the structure no 
pre-tension occurs and each element is at its original length, as shown in Figure 3. 
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Figure 3. Initial shape of the example structure 

A. Simulations on a simple example of truss structure 
1) Static process of the strategy: 

 For the simple truss, the longitudinal rigidity EA of each element is 1000 N. With the nodes 1, 2, and 3 fixed 
on the boundary and nodes 4, 5, and 6 movable, the structure is designed to deploy to the a spherical working 
surface of diameter D = 5 m and height H = 3 m. The initial shape in figure 3 is treated as the status of the 
structure before deployment and the current surface temperature is set to be the nominal temperature. In steps 
of 0S and 1S , once the structure is deployed into the space, the predetermined external forces, which are in the 

vertical down direction with magnitude of 10 N, are applied on nodes 4, 5, and 6 and generate the desired 
working shape. The nodal coordinates in initial and deformed shapes are displayed in the Table 1 and plotted in 
the Figure 4. 
 
 
 
 
 
 



Table 1. Nodal coordinates in initial and deployed configurations 
 

Node 
Number 

Initial configuration (m) 

 

Deployed configuration (m) 

,i inix  ,i iniy  ,i iniz  ,i defx  ,i defy  ,i defz  

1 0 4 0 0 4 0 

2 -3.8730 -1 0 -3.8730 -1 0 
3 2.8284 -2.8284 0 2.8284 -2.8284 0 
4 -2.0241 1.9926 -0.9449 -2 2 -1.1231 
5 -1.0017 -3.0220 -0.4362 -1 -3 -0.8729 
6 1.9538 0.4781 -1.4283 2 0.5 -1.5552 
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Figure 4. Initial and deployed shapes 

 
 When the temperature of the structure after deployment is 10 K higher than the nominal temperature, or in 
the case of the orbiting mission, when the structure enters the next section of period during the orbiting with 10 
K of temperature increase at the surface, the structure will deform to another shape under the effects of static 
thermal distortion. To maintain the surface of the structure in the desired working shape against the thermal 
deformation, the external forces are adjusted statically, the structure is rebalanced into a new equilibrium and the 
surface deforms back to the designated shape. The above process is corresponding to the step of 2S and 3S , In the 

Table 2, the adjusted external loads, the nodal coordinates of the shape of thermal deformation and the 
rebalanced configuration are presented. Figure 5 shows the static shape deformation for these two steps. By 
comparing the nodal coordinates of rebalanced configuration in Table 2 with the deployed configuration in Table 
1, it is confirmed that even though two surfaces are on the consistent working shape, the nodal coordinates are 
not necessarily the same. 
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Figure 5. Static deformation process. Left: Thermal deformation; Right: Rebalance deformation 

 
Table 2. From thermal deformation to rebalanced deformation 

 

Node 
Number 

Shape of thermal deformation (m) 
Adjusted 
loads (N) 

Rebalanced configuration (m) 

,i inix  ,i iniy  ,i iniz  ,i defx  ,i defy  ,i defz  

1 0 4 0 N/A 0 4 0 

2 -3.8730 -1 0 N/A -3.8730 -1 0 
3 2.8284 -2.8284 0 N/A 2.8284 -2.8284 0 
4 -2.0163 2.0198 -1.2012 -19.7582 -2.0265 2.0161 -1.1022 
5 -1.0124 -3.0341 -0.9576 -18.5886 -1.0138 -3.0470 -0.8324 
6 2.0203 0.5014 -1.6432 -13.1722 2.0135 0.5022 -1.5490 

 
2) Dynamic process of the strategy: 
As the structure is rebalanced to the desired shape, the nonlinear dynamic model is applied on the structure 

and is then linearized by Eq. (17) at the rebalanced equilibrium. Hence, the natural frequencies and mode shapes 
are calculated by Eq. (20) and (21); all natural frequencies and first three mode shapes are presented below: 

 
Table 3. Natural frequencies of linearized model 

 
Mode i  (rad/s) Mode i  (rad/s) Mode i  (rad/s) 

1  2.4323 4  5.1705 7  13.4770 

2  3.4226 5  5.6653 8  14.6022 

3  4.1855 6  12.3475 9  15.5461 
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Figure 6. Mode shape 1 with structure equilibrium. Left: 3-D view; Right: Top view 
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Figure 7. Mode shape 2 with structure equilibrium. Left: 3-D view; Right: Top view 
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Figure 8. Mode shape 3 with structure equilibrium. Left: 3-D view; Right: Top view 

 
Also by calculating the minimum singular values of the matrix in (24) for each input and every mode, a table 

of the singular values is obtained and only the results for the first three modes are shown below. From the Table 
4, it can be concluded that the second input of the system which is the vertical load at node 5, has the largest 
influence when controlling the first mode of the structure at the current equilibrium. Similarly, for the second 
mode and third mode, the third input (the load at node 6) and the first input (the load at node 4) have most 



control impact respectively.  
Table 4. Influence of inputs on modes 

 
 System input element 

Mode 1u  2u  3u  

1  0.0193 0.0650 0.0003 

2  0.0029 0.0005 0.0439 

3  0.0436 0.0318 0.0160 
 

B. Simulations on the sample of the deployable mesh reflector 
 Now the quasi-static strategy in the paper is applied on the sample of the deployable mesh reflector in Figure 
9. It has 37 nodes, 90 members and a spherical working shape with diameter D = 30 m and height H = 11.18 m 
under proper vertical external loads which are predetermined. The element of the structure has the nonlinear 
longitudinal rigidity defined in Eq. (25) and the Poisson’s effect is ignored. In the simulation, 0EA is assigned to 

be 1.1121e+005 N. 

 0 0
( )

0 0
EA

EA  (25) 

 Following the similar procedure above for the simple example, the reflector is first deployed into the 
working surface from the initial shape. When the surface temperature of the reflector after deployment is not the 
nominal temperature, the structure will deform under thermal distortion. Also when the structure travels between 
different predetermined sections of the orbiting cycle, the surface of the reflector generates a new equilibrium 
under thermal effects. Finally the external loads are adjusted, the structure is rebalanced and the surface of the 
reflector is pulled back to the desired working shape. Hence in summary, for the static process in our strategy, 
there are four configurations of the reflector: initial, deployed, thermally deformed and rebalanced one. Due to 
the small thermal coefficient of the material and the large Young’s modular, the nodal displacements between all 
four configurations are too small to be observed from figures and they all seem to be equal. Therefore, instead of 
showing the data sheet and the shape plots, the external forces for different steps of the static process are 
presented in the Table 5. Note that some external forces are repeated on different nodes due to the symmetry of 
the structure and only the distinct loads with relevant nodes are shown in the table. It can be seen that after 
rebalancing the reflector to ensure the surface in the desired working shape, the vertical external forces are 
increased and the elements of the structure are further tightened. 
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Figure 9. The sample of mesh reflector 



 
Table 5. External forces in different equilibriums 

 

Node Number 
External forces 
in 1S and 2S  (N) 

External forces 
in 3S  (N) 

1 -6.7799 -14.5709 
2, 3, 4, 5, 6, 7 -7.3163 -15.7293 

8,10,12,14,16,18 -8.6915 -18.7904 
9,11,13,15,17,19 -8.6797 -18.7177 

 
 Since the reflector has been statically pulled back to the working shape by the tension ties under the 
temperature variation, the dynamics of the structure inside the section should be investigated. The nonlinear 
dynamic model (11) is applied and linearized at the nonlinear static equilibrium after the rebalanced deformation. 
Then from Eq. (20) and (21), the natural frequencies and mode shapes are calculated. The range of i is from 
13.66584 rad/s to 195.6173 rad/s and the first three distinct natural frequencies are shown below with relative 
mode shapes plotted in Figure 10. 
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Figure 10. First four modes of the mesh reflector. First: up-left; Second: up-right; Third: bottom-left; 

Forth: bottom-right 
 

1,2 3 413.6584 rad/s 14.7843 rad/s 16.0913 rad/s  



 Besides the analysis for the control impact of inputs on different dynamic modes as we did for previous 
example, it is very important to investigate the relationship between the natural frequencies of the linearized 
model and the variations of the parameters, such as the temperature of the reflector surface. Each time as the 
temperature varies, we need to consider two different static status of the reflector: 2S , when the structure is 
distorted away from the working surface under temperature changes; 3S , when the structure is rebalanced by the 

external loads under thermal effects and the working shape of the surface is maintained. Then based on these 
two nonlinear static equilibriums, the linearized models can be derived and the natural frequencies are 
calculated. Considering the overall range of temperature variation to be 100 K , the dynamics of the structure is 
analyzed for every 5 K changes of temperature and the results are plotted in Figure 11 and 12. In Figure 11, it 
indicates that naturally the natural frequencies of the system will increase when the temperature of the structure 
increases and this increasing curve may not be smooth. However, Figure 12 shows that after the structure is 
rebalanced to the working shape at each equilibrium, the natural frequencies decrease smoothly when the 
structure temperature increases. 
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Figure 11. Variation of natural frequencies at 2S status  
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Figure 12. Variation of natural frequencies at 3S status  

VI. Conclusion 
This study proposes a quasi-static strategy to analyze the dynamics of the deployable mesh reflector in the 

space mission based on a coupled thermal-elastic dynamic model which is highly control-orientated. The 
numerical example shown in the paper provides the detailed guidance on the procedure of modeling and 
analysis of the reflector dynamics. The simulation on the sample of deployable mesh reflector is then presented 
with the discussion on the temperature dependence of the natural frequencies. The results in this research work 
reveal the important properties of the dynamics of the mesh reflector, and the proposed strategy and models are 
crucial and will be used to design the feedback control of the surface shape in the next stage of research. 
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