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Abstract— This paper summarizes the author’s work on
timescales based on Kalman filters that act upon the clock
comparisons. The natural Kalman timescale algorithm tends
to optimize long-term timescale stability at the expense of
short-term stability. By subjecting each post-measurement error
covariance matrix to a non-transparent reduction operation, one
obtains corrected clocks with improved short-term stability and
little sacrifice of long-term stability.

I. FREE-RUNNING TIMESCALES

This paper is a summary of work on the formation of
timescales, or composite clocks, that the author has carried
out over the last ten years, with the goal of surpassing the
performance of a previous timescale algorithm [1] that uses a
Kalman filter to estimate what the clocks are actually doing.

Let us describe brie y the notion of a timescale derived
from an “ensemble” of clocks. One has a set of free-running
clocks with “phase” (i.e, time) residuals at
the nominal time . One cannot read the values directly
(to the desired precision) but can only measure the phase
differences at a set of measurement
times . A timescale algorithm, which uses these data and
a mathematical model for the clocks, calculates numerical
phase estimates to be subtracted from the clock phases,
whether logically or physically, to give corrected clock phases

. (1)

One hopes to produce corrected clocks with better stability1

than the physical clocks over a range of averaging times. Since
a motion common to all the clock phases is transparent to their
differences, one cannot expect the corrected clocks to stay
close to a physical clock. Improved timekeeping accuracy is
not to be expected from combining clock readings in this way.

Section II describes the most common clock model. Section
III sets up an ensemble of these clocks and describes the
natural Kalman filter algorithm for calculating the phase
estimates. The existing results motivate the author’s work to
reduce the short-term noise of the corrected clocks. Sections
IV and V describe the author’s “reduced” Kalman filter
algorithms that apply to noiseless measurements, as in a
local ensemble. Section VI describes Davis’s improvements.
Section VII extends the method to remote sets of clocks with
significant time-transfer noise. Section VIII gives a recent

1Stability of a phase for an averaging time is defined by the
Allan deviation or Hadamard deviation , where

, .

result on the reduced Kalman covariance matrices of a clock
ensemble.

II. CLOCK ENSEMBLE MODEL

Much work in this area has been based on a clock
model [2][3] with three independent process-noise compo-
nents, called white FM (WFM), random-walk FM (RWFM),
and random-run FM (RRFM), with phase spectra pro-
portional to , , and , and Hadamard deviations

proportional to , , and , respectively.
Missing are the odd-powered models, in particular icker FM
(FFM), for which , .

The state of one clock at time is represented as a column
vector, , whose components
are called phase, frequency state, and drift state. The state
evolves according to the stochastic differential equations

(2)

where are independent mean-zero white noises with
known two-sided spectral densities . One may set ,
for example, to simulate a constant drift , in which
case contains a quadratic component .

The state of clocks is a -vector , a stack of
clock vectors . The measurements performed on the

state consist of noisy phase comparisons, , at
a sequence of times , where the measurement noise
variances, , are known. Even without noise,
however, the measurements do not determine the clock states.

III. NATURAL KALMAN TIMESCALE

To set up a Kalman filter to estimate the state from the
measurements, the differential equations (2) for each clock are
integrated between two measurement times, call them and
, to give a stochastic difference equation. For one clock this

takes the form

(3)

where

(4)



and the process noise is a mean-zero 3-vector with
covariance matrix

(5)
where the entries are determined by symmetry. The differ-
ence equation for the whole ensemble is written

where has copies of down the diagonal and is a
stack of uncorrelated ’s consequently ,
which has matrices down the diagonal.

The phase comparison measurements at time take the
form , where is a matrix of

’s and 0’s such that each row takes the difference of two
phase components of . The mean-zero measurement noise

satisfies , a known matrix, usually diagonal.
For a local ensemble one sets .

Let be an unbiased estimate of its quality is
specified by an error covariance matrix

Given , , and , the Kalman filter equa-
tions produce and as follows. For clarity, some
dependencies on and are suppressed.

(prediction of )

(error cov. of )

(Kalman gain)

Evidently is a linear function of and . In
fact, is unbiased for and has the minimal error
covariance matrix of any unbiased linear function in the
sense that is non-negative definite if is the error
covariance matrix of any other unbiased linear function.

The natural Kalman corrected clock states are defined by
. The corrected phase represents

the timescale at clock . The corrected phases need not
coincide for remote clocks with noisy phase comparisons, but
they do coincide for a set of local clocks with negligible
measurement noises ( ). In this case the common
corrected phase constitutes the unique timescale, which may
be called .

A natural Kalman timescale was implemented at NIST
during the 1980’s as the local timescale TA(NIST). The GPS
Kalman filter [4] also incorporates a natural Kalman timescale.
When applied to a simulated ensemble of dissimilar clocks,
the NIST timescale was observed to be quiet in long term but
noisier in short term than some of the clocks in the ensemble.
Weiss and Weissert [5] suggested that the Kalman filter is

optimizing accuracy at the expense of stability. This author
confirmed their observations with his own simulations and set
out to find an improved method of using a Kalman filter to
make a timescale that is more stable than any clock in its
ensemble over a wide range of averaging times. Stein [6][7]
had already accomplished this goal with the KAS-2 algorithm
and had described some of its principles, but a full description
remains proprietary.

In searching for improved Kalman timescales, the author
has held to one fixed principle: the natural Kalman filter does
a good job of estimating the underlying frequency and drift
states, which, in the author’s opinion, re ect the physics of
the frequency standards driving the clocks. The author’s filter
modifications preserve the frequency and drift state estimates
but modify the phase estimates to improve the stability of the
corrected phases.

IV. KALMAN PLUS WEIGHTS

The author’s first successful timescale algorithm [8][9]
applies to a local ensemble with negligible measurement noise.
The natural Kalman phase estimates are not used at all, but the
Kalman frequency and drift estimates, and , are used in
a version of the “basic timescale” iteration. The propagation
of the timescale, call it , from to can be written most
simply as

(6)

which says that the increment of is a weighted average
of the true phases minus their predicted values. The
weights are to be chosen subject to . The true
phases are unknown, of course. To turn this into something that
depends only on known quantities, subtract
from both sides to give

(7)

which is now a computable iteration for
, the offset of the timescale from physical clock .

To set the weights one tries to minimize the variance of
in (7). From (3) and (5) one can argue for

the approximation that should be made proportional to
the matrix element . As a further approximation, one
can make the weights inversely proportional to the white FM
noise levels of the clocks.

Figure 1 [9] shows the performance of the natural Kalman
and KPW timescales on a simulated ensemble of 8 clocks. The
odd-numbered clocks have a combination of the three noise
types WFM, RWFM, and RRFM. The KPW scale is much
quieter than the natural Kalman scale at short averaging times
the natural Kalman scale is slightly quieter around .
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Fig. 1. Hadamard deviation of 8 simulated clocks and two timescales.

V. REDUCED KALMAN TIMESCALE

For the KPW scale the Kalman phase estimates are irrel-
evant, but those state components are still carried along by
the Kalman filter. Because only the phase differences are
measured, the phase rows and columns of the covariance
matrix grow fast. After a processing a set of noiseless
measurements, however, is singular in fact, the phase
rows and columns are all the same vector. The author proved
that setting all these matrix elements to zero after each
measurement leaves unchanged the future Kalman frequency
and drift estimates and their covariances, thus giving a more
stable calculation. The author was fortunate to discover, just
before giving the paper [9] at BIPM, that this crude operation
of covariance reduction, called the “guillotine”, also causes
the ignored phase estimates , when used as in (1), to
yield automatically a different “reduced” timescale that
equals a KPW timescale with the exact weights that
minimize the mean squared value of the timescale increment

[10]. These implicit optimal weights, which
can easily be obtained from the Kalman gain matrix, are
usually not far from the explicit weights chosen previously
for KPW, and the two timescales differ little in practice. The
natural Kalman timescale is also a KPW scale with implicit
weights [11], but these can differ greatly from the optimal
weights.

A Kalman filter that modifies its future estimates by using
a reduced covariance matrix is called a reduced Kalman filter.
The covariance matrix becomes an operational tool instead of
a measure of the actual uncertainty of the phase estimates.

VI. WORK WITH J. DAVIS

During 2003–5 John Davis of NPL and the author worked
together on the reduced Kalman timescale of a local ensemble.
Two of his improvements of the art [12] are summarized here.

Fig. 2. Approximating icker FM noise by a sum of independent Markov
frequency processes.

First, an approximation of FFM noise can be added to
the 3-state clock model by including a sum of independent
Markov frequency processes (white noise through a single-
pole lowpass filter). One such process is described by

where is phase, is frequency, and is a white noise
with spectral density . Integrating this from to gives
the stochastic difference equation

where the covariance matrix of the depends on , , and
. One can include several such components in each clock with

values of and chosen so that their sum approximates
FFM noise over a range of time scales, as shown in figure 2,
which plots the Allan deviation of the components and their
sum. One can vary the parameters of the Markov components
to produce a more complex frequency stability profile between
regions of short and long averaging times.

Second, Davis devised a numerical calculation of the theo-
retical stability of the reduced Kalman timescale. This is done
by calculating the true covariance matrix in a separate iteration
that runs alongside the iteration for the operational reduced
covariance matrix. One can also calculate the theoretical
stability of each clock phase minus the timescale, and the
results can be compared with the measured stability of the
clock corrections calculated by the operational filter.

VII. TIME-TRANSFER NOISE AND IEM

When noise is admitted to the clock phase comparisons, the
corrected clocks need not coincide, but the th corrected phase

can be said to represent the timescale at clock . In his
implementation of the natural Kalman timescale, Brown [4]
devised a so-called implicit ensemble mean (IEM), a 3-vector

. This is a weighted average
of the corrected clock states , using a weight matrix

that is calculated by solving a least-squares problem



whose noise covariance matrix is just the Kalman filter matrix
. The corrected states tend to cluster about the IEM, and

the covariance matrix of the “representation errors”
is Brown’s reduced form of . The representation

errors tend to be smaller than the corrected clock states, and
grows more slowly than does. The use of in the

Kalman filter is transparent to the future state estimates, and
the still represent the natural Kalman timescale. For the
case of noiseless measurements, when all the corrected clocks
coincide, Galleani and Tavella [13] showed that the IEM phase
component does not reduce to the common timescale
phase . This happens because depends on the corrected
frequency and drift states [15].

By modifying Brown’s ideas, the author was able to devise
an extension of the reduced Kalman timescale that works well
in the presence of measurement noise [14]. The IEM is now a
one-dimensional phase , a weighted average of the

corrected clock phases , where is a row of weights
calculated from a 1-parameter least-squares problem with
noise covariance matrix , the phase-phase submatrix of

. After processing the measurements, one replaces the error
covariance matrix by the reduced version ,
where

and is a column vector of 1’s. (The state vector has been
rearranged so that all phases come first.) It can be shown
that is the true covariance matrix of the corrected states
with each replaced by its representation error .

The new covariance reduction is not transparent to the
future phase estimates. When it is carried out after each set
of measurements, the mean squared values of the following
increments are minimized:

, to , the corrected phases minus
the previous IEM

, the IEM increment.

In the absence of measurement noise, the covariance re-
duction reduces to the simple guillotine reduction of section
V, the IEM and all reduce to , and the optimized
increments reduce to .

Figure 3 shows a simulated two-clock ensemble with mea-
surement noise. For the natural Kalman scale, the corrected
phases and Brown’s IEM phase component all have the
stability of the green clock, which is noisy in short term and
quiet in long term. For the reduced Kalman scale, the IEM
and corrected blue clock have essentially the same stabilities,
while the corrected green clock overcomes the noise and joins
the IEM for .

VIII. A RECENT RESULT ON COVARIANCE REDUCTION

In a further comparison of the natural and reduced Kalman
timescales [16], the author’s colleagues M. Süß and D. Mat-
sakis discovered that the covariance reductions of Brown ( )
and the author ( ) can be concatenated in either order to
give a third, further reduced covariance matrix. Afterwards
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Fig. 3. A two-clock ensemble with measurement noise, showing the stability
of the clocks, corrected clocks, Brown’s IEM (phase component) and the
author’s IEM.

the author was able to prove this result mathematically. The
reductions are illustrated in fig. 4, in which the matrices are
rearranged so that all the phase components come first. For a
starting covariance matrix , the final matrix,

has the phase border of and the frequency-
drift submatrix of . The final matrix can be used in place
of for operating the reduced Kalman timescale.

IX. CONCLUDING REMARKS

By running simulated clock models, the author has found
that that the natural method of constructing a timescale from
a Kalman filter can be improved by a suitable reduction
of the Kalman error covariance matrix, different from the
transparent reduction of Brown. The natural Kalman timescale,
when applied to dissimilar clocks, tends to minimize the long-
term stability of the corrected clocks without regard to their
short-term stability. The reduced Kalman timescale, which is
designed to minimize the increments of the corrected clocks
instead of their values at one time, seems to produce good
results for stability over all available averaging times. So far,
though, this is only an empirical observation from experi-
ments in simulation playpens. One needs to gain experience
with these algorithms on real clock ensembles while solving
practical problems such as noise parameter estimation, clock
dropouts, and changes of clock behavior.

The author thanks P. Tavella for inviting him to give this
paper. This work was carried out by the Jet Propulsion Lab-
oratory, California Institute of Technology, under a contract



Fig. 4. Two commuting reduction operations, and , applied to a
covariance matrix .

with the National Aeronautics and Space Administration.
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