
Software Defined Radios (SDR)
for NASA Spaceflight Applications

James Lux, P.E.
Jet Propulsion Laboratory, California Institute of Technology

SDR Task Manager, CoNNeCT project Co-Investigator
james.p.lux@jpl.nasa.gov

This research was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

Copyright 2011, California Institute of Technology; Government sponsorship acknowledged.

Outline
• NASA’s adoption of Software Defined Radio

– NASA’s unique needs
– NASA Space Telecommunications Radio System (STRS) Architecture Standard
– CoNNeCT project and the SCaN Testbed on ISS

• JPL’s SDRs
– Electra on MRO, MSL, etc.
– JPL-SDR for CoNNecT

• JPL-SDR system architecture
– Hardware platform
– Software Infrastructure (the STRS Operating Environment)
– Waveforms and Applications

• Development Approach
– Testbeds, configuration management, build tool-chain

• Future Plans
– CoNNeCT Experiments

What’s a Software Defined Radio

• A SDR is a radio where the function is substantially determined by
software
– and where that function is changeable

• There are several flavors of SDR
– Software controls an analog radio

• Microprocessor front panel to turn knobs and flip switches
• Not really a SDR – more a “software controlled radio”

– Fixed function radio that uses Digital Signal Processing
• Replacing analog components with digital equivalents

– Radios that are reprogrammable
• Function can be changed by loading new software

– Radios that program themselves
• Cognitive Radios – a topic for the future

Radio + Computer not always = SDR

Analog computer, programmed with
patch cables, for Project Mercury

JPL Computers from 1953, used
to process telemetry data

They’re certainly reconfigurable, but SDR generally implies use of a
generally reprogrammable resource with “loadable software”

Digital Signal Processing

Traditional vs Software Radio

BPF LNA X

LO

BPF Amp Demod AGC

Demod BPF LNA ADC

•Today’s radios tend to be a hybrid between these two
•There aren’t many 24 bit, 100 Gsample/second ADCs
•There aren’t multi-TeraFLOP processors, either

•But.. After downconversion and bandlimiting, most of the processing is
reprogrammable and digital

•And it’s a whole lot more complex than the simple box “Demod” above
•Just like there’s a whole lot more to an LNA than a box that says “amplifier”

An example of what’s in the DSP box

Figures from: Chapter 2 of Hamkins & Simon,
Autonomous Software-Defined Radio Receivers for
Deep Space Applications, DESCANSO Book Series
Volume 9, JPL, 2006

And this doesn’t even get into “computer” kinds of
things: file systems, file transfers, network protocols,
etc.; All things expected of a modern SDR.

Bringing structure to an unruly world
• Early SDRs used ad-hoc software architectures

– This reflects the evolution as various analog
functions were migrated to DSP: the architecture
was still the same

• Down converters, demodulators, modulators,
oscillators, mixers : All have analog equivalents & are
often IP-cores in an FPGA

• FPGA design is patterned after hardware design: tools
developed for ASICs, design flow aimed at “tape-out”,
etc.

• Programmable DSP (TI, Analog Devices) more
“software-y”; but still ad-hoc architectures and
software design; much like embedded microcontrollers:
one big loop, interrupt driven

– Structure is “signal flow graph” driven
• Today’s radios need more complex functionality in their

software
– The radio is called upon to have varied functions:, many of which are not

signal-flow-graph like: Networking functions, time transfer, etc.
– Starts to look more like a computer that does radio, rather than a radio

that happens to have a computer in it.

• Need something better, easier to maintain and generate
– Maybe a layered architecture? Maybe dynamic late binding?
– JTRS and the SCA

Buracchini, “The Software Radio Concept”,
IEEE Communications Magazine, Sept 2000

Richardson, et al., “Evolution of the
Software Communications Architecture
Standard”, MILCOM 2009

And now, a word about “Flight Qualified”
• Very long development and use cycles compared to commercial world

– Mission proposal to launch = 5-6 years
– Hardware selection >3 years before launch
– Cruise phase to outer planet = 5-6 years
– Operating phase

• Small acquisition quantities
– 1 Engineering Model, 1 Flight Model (FM)
– Maybe 2 FMs and maybe a spare (“single string” is becoming the norm, EM as spare)

• Conservative design philosophy for parts selection
– You can’t bring it back to fix it
– Use what has worked before, unless there’s just no other way.
– “Space Qualified” components preferred

• Limited choices for packages (hermetic, ceramic)
• Radiation test data available
• Very long lead times (18-24 months)
• Leads to limited performance, relative to commercial applications

• Conservative operating philosophy
– No surprises! Everything rehearsed and tested on the ground
– Don’t “brick the box” with a software upgrade (it might be the only box)
– Very skinny data pipe (bps to kbps) to the box for software upgrades, debug info, etc.

Not like your PC, a “space SDR” isn’t going to have a big disk drive, a Gbps
Ethernet connection, CORBA middleware, 5 layers of abstraction and dynamic
name resolution with late binding and resource allocation.

Space Telecommunications Radio System
• Over past few years NASA has promulgated a

“lightweight” software radio architecture standard: STRS
– Suited to more limited platform capability
– Addresses more immediate needs first

• STRS has 5 goals
– Evolvable Open Standard Architecture Specification

• The standard provides a common, consistent framework to
develop, qualify, operate and maintain complex reconfigurable
and reprogrammable radio systems.

– Standard Library of Hardware and Software Components
• e.g. TDRSS modem

– Design Reference Implementation & Specifications
– Development Tools and Testbeds

• JPL SDR, NASA/Glenn Research Center SDR3000
– Flight Tests and Demonstrations

• CoNNeCT

Physical Level

Application/User Level

Kernel Level

Architecture

• Waveforms (applications)
– Covers from EM wave to data

interface
– Not just the modulation

– Framing
– IP routing

• Operating Environment
– OS (and its services)
– Infrastructure

• helpful stuff the OS doesn’t
provide

• Hardware platform
– The metal, the electrons, the

photons STRS Compliant Platform

Waveform Application

STRS Infrastructure

POSIX OS

HW Device Drivers

BSP

Communication
Hardware

Platform
Hardware

Physical HAL Driver API

IO System

STRS API

Radio Services

Logical HAL

OS Services

The JPL Software Defined Radio

Full Duplex S-band RF module
Tx: 2.2-2.3 GHz, 5-10W output
 2 x 10bit 50 MSPS DAC (I/Q)
Rx: 2.025-2.12 GHz, 11 MHz BW
 12 bit, 50 MSPS ADC

GPS Receiver
L1,L2,and L5

Digital Processing
66 MHz SPARC V8
128 MByte SDRAM + 512 MByte Flash
2x Xilinx Virtex II 3Mgate FPGAs
SDRAM and Flash on each FPGA

Control and Data Interfaces
MIL-STD-1553B
2 SpaceWire Links

9 liters, 6.6 kg
(28.2 L x 20.6 W x15.5 H cm)

15 W Rx (typical)
 + 2 W (GPS)
 + 65W Tx S-band

Other JPL SDRs in the family

• Electra – now flying around Mars on Mars Reconnaissance Orbiter
– 17.2 x 21.9 x 14 cm
– 4.9kg, 63 Watts @ 28V
– UHF (390-450 MHz)

• Tx 8.5 Watts
– 1-2048 kbps BPSK
– CCSDS Proximity-1

 Space Link Protocol
– 24 MHz SPARC V7
– Xilinx XQVR 1000 FPGA
– EEPROM

For more info read the paper:
Edwards, et al., “The Electra proximity link payload for Mars relay telecommunications and
navigation”, 54th Inter. Astro. Cong, Bremen Germany, 29 Sep 2003
at: http://hdl.handle.net/2014/7832

 and the book:
Autonomous Software-Defined Radio Receivers for Deep Space Application edited by Jon
Hamkins & Marvin K. Simon
 at: http://descanso.jpl.nasa.gov/Monograph/mono.cfm

JPL-SDR Hardware Overview

Baseband
Processor

DC/DC Power Converters

2.2-2.3 GHz
SSPA

Diplexer 2.025-2.120 GHz
Receiver

2.2-2.3 GHz
Exciter

GPS RF
sampler

I

Q

IF

bits

1553

SpW

SpW

Test

DC

BPM

PS SSPA

GPSM
RFM

Dip

Baseband Processor

SPARC

4 Gb
Flash

3Mgate
FPGA

1553

Spacewire
Phy

RF
interface

Interfaces to Host Spacecraft

Modem

1Gb RAM

STRS OE

RTEMS

Memory I/F Memory I/F

10s of kbps

1-3 Mbps

8 MHz BW

>10 Gbps

250 Mbps

100-200 Mbps

Spacewire
Phy

11 MHz BW User
Code User

Code

1Gb RAM

4Gb
Flash

1Gbps

Read 300 Mbps
Write 10 Mbps

1Gb RAM

4Gb
Flash

1Gbps

Read 300 Mbps
Write 10 Mbps

Spacewire Spacewire

User

GPS
Interface

L1, L2, L5

3 Mgate FPGA

GPS

Hardware:Infrastructure:Waveform

JPL-SDR Hardware

Reconfigurable Xilinx
Software

SPARC software

OE Infrastructure Waveform User Space Software

command handler

device manager

telemetry handler

APP_API

STRS_API

RTEMS
Device
Driver

Waveform
specific FPGA
Components

RTEMS
Device
Driver

RTEMS

OE component

OE component

RTEMS
Device
Driver

Waveform specific
hardware

Infrastructure
Provided FPGA

Components

Infrastructure
Hardware
(e.g. 1553,

power control)

RTEMS
Device
Driver

Command / Telemetry

Defined in Recommended Practice for
FPGA/GPP interface

Defined in STRS OE User Manual /
Command Dictionary

Physical Interface
defined in JPL-SDR

ICDDefined in Waveform/Applications
Developer Guide

BCSW
Command / Telemetry

Defined in BCSW Command &
Telemetry Dictionary

RF
Hardware

Outside
World

Defined in Platform Handbook

Defined in JPL-SDR Hardware User
Manual

Abstractions of Hardware

PLL

Parallel to
Serial

Register
Interface

RTEMS
device

Library API

Application
“set Rx Local Oscillator to 1930 MHz”

status= Set_RxLO(double fMHz);

PLL A, M, R values
status = ioctl(fp, RXA, A);

Clk,
Data,
Strobe

20 bit
string

General Purpose Processor GPP
(SPARC) FPGA RF hardware

FPGA interface abstractions

Xilinx

Modem/
Waveform/

App

ADC
Abstraction

(adc.v)

sh13

sh18

sh19

A/D

D/A

D/A

PLL control
(pll.v)

10

12

DR
OR

SRC

DFSB
OEB
CLK

CLK

10
CLK

PWM
(pwm.v)

PWM

8

SynthDat
SynthClk

Spare (TxSynStb/ SEL1)

TxSynLok

Spare (RxSynStb / SEL1)

RxSynLok

TxSynSel
RxSynSel

I/Q DAC
Abstraction

(dac.v)

16
i_sys_clk

16

i_idata

i_qdata

16

i_clk

o_data

CPU

CPU Address/
Data/Control

 I/F
(sparc_if.v)

o_data_ready

Clock Distribution
(abstraction)

SpaceWire
(from

GSFC)

SDRAM

Flash

InterXilinx Link

TimeSyncDist

SDRAM

Flash

LVDS xcvr

Other Xilinx

Other Xilinx

HK

Interrupt Controls

S
parc I/O

 B
us

Clocks from
HK

GPS Slice
Abstraction

(gpsm.v)
4

o_data_ready

HK

GPS Interface

66MHz SYSCLK1
49.244MHz SYSCLK2

Ext Ref SYSCLK3

96

i_generate_sawtooth
i_reset_n

PLL Register
Interface

(pll_control.v)

PWM Register
Interface

(pwm_control..v)

o_dataRegister
Interface

LEDs

LEDs

GPP Software Infrastructure
• GPP = General Purpose Processor (distinguishes it from specialized signal processing)
• Command ingest and dispatch
• Heartbeat telemetry
• File Transfers

– Transfer from host to radio
– Transfer from radio to host

• Utilities
– Debug (memory dumps)
– File system (directory, delete, copy, etc.)

• Hardware control
– Power on/off for GPS slice and Solid State Power Amp (SSPA)
– Reference oscillator configuration

• Flash management
– Copy from InMemory File System to/from Flash

• Application management
– Initialize, start, stop, configure, query

STRS Application State Diagram

• All STRS applications (waveforms) have
the same basic state diagram for
interaction
– OE talks to App via APP_API
– App uses OE by using STRS_API

• Applications receive “configure”
commands
– Text based commands

• configure sband 1 txFreq 2250
• configure sband 1 bitRate 2048

– Translated by infrastructure to
• APP_Configure(handle, …)

• Applications return results from
“query” commands
– query sband 1 txPLLlock
– query connecthw 1 SSPAtemp

Development process

• Standard Toolchain
– Standard gnu tools for cross development
– Hosted on a Linux workstation, targeted to SPARC

• JPL STRS OE
– Libraries of utilities and infrastructure (device drivers)
– Standard RTEMS 4.9.3 for the RTOS
– Libraries for FPGA modules

• Build process
– Build for the target
– Test on prototype BPM
– Test on flight unit in Ground Testbed
– Schedule for upload to spacecraft
– Test in flight on ISS

Development Workstation

•Uses a prototype of the Baseband Processor Module
•the ADC/DAC/DSP and SPARC
•RF sections simulated with test equipment

•Remotely accessible
•Similar versions with the actual radio are possible
•Simulated processors are available, but… the simulation doesn’t have
the timing fidelity and it’s hard to do signal processing.

Development PC

High level flow

OE
libraries

User WF

SPARC
Image
(demo
WF)

RTEMS

Radio

JPL Repository

RTEMS

OE
libraries

Demo WF Demo WF

build

build

SPARC
Image

(user WF)

GNU
Build
Tools

•JPL supplies *documentation*, OE libraries & Demo waveforms.
•User supplies RTEMS, GNU tools, & their Waveform
•User installs them on a development PC.
•User then builds a SPARC image using the tools from the combination of:

• OE libraries, RTEMS and one or more applications.
•The loadable image is then loaded into the radio and run.
•Similar flow for FPGA: JPL libraries in Verilog and VHDL, you use the synthesis tool of your
choice

Prototype Target

Linux PC Windows
PC

Loading images on the target (debug)

SPARC
image

GDB
debugger

Xilinx
Bitstream

Xilinx
Tools Serial

Console

USB-JTAG USB-JTAG

Xilinx1 Xilinx2 SPARC

Se
ria

l

DSU
JTAG JTAG

1553B

1553B
OmniBusBox Se

ria
l

Console 1553

1553
utilities

Ethernet

JPL-SDR

Loading new software in Flight

Xilinx1 Xilinx2 SPARC 1553B

SpW

SCaN Testbed Avionics

1553

SPARC
images

Xilinx
bitstreams

Mission
Operations

Center

International
Space
Station

NASA
Comm.
Networks

Onboard
networks

Other Files

CoNNeCT

• Communications, Navigation,
and Networking
Reconfigurable Testbed

• 3 SDRs, antennas, and a
flight computer on
International Space Station

• Launch in Jan 2012,
available for experimental
operations 2012 and 2013

• Experiment Announcement
of Opportunity soon

More info: http://spaceflightsystems.grc.nasa.gov/SpaceOps/CoNNeCT/

Another View of CoNNeCT
TDRS-W

(171/174° W)

TDRS-E
(41°/46° W)

TDRS-
Z

(275°W)

Wallops Island Ground
Station

CONNECT Control Center
Glenn Research Center

(GRC)
White Sands Complex

TSC TT&C
Path

S-Band

S-Band S-Band

S-Band

NASA/MSFC
/JSC

(HOSC/POIC
)

ISS TT&C Path
Ground Network Communications

 S-band Ground Network Communications

Lunar Surface/Relay Emulation Experiments

CONNECT SN Data Path CONNECT GN Data Path

IP Networks

L-Band

TDRS
 Space-to-

Ground
Links

Ka-Band

 Next Generation Navigation
 Techniques

GPS L1 and future L2 and L5
Orbit determination and relative

navigation studies

Space Network Communications
S-band and Ka-band

Mission Concept & Operations
Adaptive SDR/STRS-based systems
Operational flexibility and capability

Demonstrate Cx, C3I functionality aspects

On-Orbit Networking
Technologies

Disruptive Tolerant Networking Studies
On-board routing, security

International
Space Station

Advance SDR/STRS
Communications Technology to TRL-7,

Compliant to STRS Common Architecture
Reprogrammable radio functions

Advancement and improvement of the STRS Standard
Multiple sources of STRS compliant radios

 Future of space SDRs

• SDRs are here for most conventional needs
– Many space radios are already software defined, but just not in-flight reconfigurable

• Work is in progress to add network stacks and other functions
– i.e. Disruption Tolerant Networking (DTN) & GPS
– Limited only by processing resources and creativity of developers

• SDRs are not a panacea
– Highly specialized functions needing especially low power or mass and no

network function
• e.g. radio science coherent carrier only transponder

– As technology advances, the “break even” line between specialized and
general SDR will move

• SDRs are challenging to specify and develop requirements for
– How do you specify generalized “platform” requirements when the ultimate

communication or application requirement won’t be known until after launch?

	Software Defined Radios (SDR)�for NASA Spaceflight Applications
	Outline
	What’s a Software Defined Radio
	Radio + Computer not always = SDR
	Traditional vs Software Radio
	An example of what’s in the DSP box
	Bringing structure to an unruly world
	And now, a word about “Flight Qualified”
	Space Telecommunications Radio System
	Architecture
	The JPL Software Defined Radio
	Other JPL SDRs in the family
	JPL-SDR Hardware Overview
	Baseband Processor
	Hardware:Infrastructure:Waveform
	Abstractions of Hardware
	FPGA interface abstractions
	GPP Software Infrastructure
	STRS Application State Diagram
	Development process
	Development Workstation
	High level flow
	Loading images on the target (debug)
	Loading new software in Flight
	CoNNeCT
	Another View of CoNNeCT
	 Future of space SDRs

