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Outline 
• NASA’s adoption of Software Defined Radio 

– NASA’s unique needs 
– NASA Space Telecommunications Radio System (STRS) Architecture Standard 
– CoNNeCT project and the SCaN Testbed on ISS 

• JPL’s SDRs 
– Electra on MRO, MSL, etc. 
– JPL-SDR for CoNNecT 

• JPL-SDR system architecture 
– Hardware platform 
– Software Infrastructure (the STRS Operating Environment) 
– Waveforms and Applications  

• Development Approach 
– Testbeds, configuration management, build tool-chain 

• Future Plans 
– CoNNeCT Experiments 



What’s a Software Defined Radio 

• A SDR is a radio where the function is substantially determined by 
software 
– and where that function is changeable 

• There are several flavors of SDR 
– Software controls an analog radio 

• Microprocessor front panel to turn knobs and flip switches 
• Not really a SDR – more a “software controlled radio” 

– Fixed function radio that uses Digital Signal Processing 
• Replacing analog components with digital equivalents 

– Radios that are reprogrammable 
• Function can be changed by loading new software 

– Radios that program themselves 
• Cognitive Radios – a topic for the future 



Radio + Computer not always = SDR 

Analog computer, programmed with 
patch cables, for Project Mercury 

JPL Computers from 1953, used 
to process telemetry data 

They’re certainly reconfigurable, but SDR generally implies use of a 
generally reprogrammable resource with “loadable software” 



Digital Signal Processing 

Traditional vs Software Radio 
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•Today’s radios tend to be a hybrid between these two 
•There aren’t many 24 bit, 100 Gsample/second ADCs 
•There aren’t multi-TeraFLOP processors, either 

•But.. After downconversion and bandlimiting, most of the processing is 
reprogrammable and digital 

•And it’s a whole lot more complex than the simple box “Demod” above 
•Just like there’s a whole lot more to an LNA than a box that says “amplifier” 



An example of what’s in the DSP box 

Figures from: Chapter 2 of Hamkins & Simon, 
Autonomous Software-Defined Radio Receivers for 
Deep Space Applications, DESCANSO Book Series 
Volume 9, JPL, 2006 

And this doesn’t even get into “computer” kinds of 
things: file systems, file transfers, network protocols, 
etc.; All things expected of a modern SDR. 



Bringing structure to an unruly world 
• Early SDRs used ad-hoc software architectures 

– This reflects the evolution as various analog 
functions were migrated to DSP: the architecture 
was still the same 

• Down converters, demodulators, modulators, 
oscillators, mixers : All have analog equivalents & are 
often IP-cores in an FPGA 

• FPGA design is patterned after hardware design: tools 
developed for ASICs, design flow aimed at “tape-out”, 
etc. 

• Programmable DSP (TI, Analog Devices) more 
“software-y”; but still ad-hoc architectures and 
software design; much like embedded microcontrollers: 
one big loop, interrupt driven 

– Structure is “signal flow graph” driven 
• Today’s radios need more complex functionality in their 

software 
– The radio is called upon to have varied functions:, many of which are not 

signal-flow-graph like:  Networking functions, time transfer, etc. 
– Starts to look more like a computer that does radio, rather than a radio 

that happens to have a computer in it. 

• Need something better, easier to maintain and generate 
– Maybe a layered architecture? Maybe dynamic late binding? 
– JTRS and the SCA 

Buracchini, “The Software Radio Concept”, 
IEEE Communications Magazine, Sept 2000 

Richardson, et al., “Evolution of the 
Software Communications Architecture 
Standard”, MILCOM 2009 



And now, a word about “Flight Qualified” 
• Very long development and use cycles compared to commercial world 

– Mission proposal to launch = 5-6 years 
– Hardware selection >3 years before launch 
– Cruise phase to outer planet = 5-6 years 
– Operating phase 

• Small acquisition quantities 
– 1 Engineering Model, 1 Flight Model (FM) 
– Maybe 2 FMs and maybe a spare (“single string” is becoming the norm, EM as spare) 

• Conservative design philosophy for parts selection 
– You can’t bring it back to fix it 
– Use what has worked before, unless there’s just no other way. 
– “Space Qualified” components preferred 

• Limited choices for packages (hermetic, ceramic) 
• Radiation test data available 
• Very long lead times (18-24 months) 
• Leads to limited performance, relative to commercial applications 

• Conservative operating philosophy 
– No surprises!  Everything rehearsed and tested on the ground 
– Don’t “brick the box” with a software upgrade (it might be the only box) 
– Very skinny data pipe (bps to kbps) to the box for software upgrades, debug info, etc. 

Not like your PC, a “space SDR” isn’t going to have a big disk drive, a Gbps 
Ethernet connection, CORBA middleware, 5 layers of abstraction and dynamic 
name resolution with late binding and resource allocation. 



Space Telecommunications Radio System 
• Over past few years NASA has promulgated a 

“lightweight” software radio architecture standard: STRS 
– Suited to more limited platform capability 
– Addresses more immediate needs first 

• STRS has 5 goals 
– Evolvable Open Standard Architecture Specification 

• The standard provides a common, consistent framework to 
develop, qualify, operate and maintain complex reconfigurable 
and reprogrammable radio systems. 

– Standard Library of Hardware and Software Components 
• e.g. TDRSS modem 

– Design Reference Implementation & Specifications 
– Development Tools and Testbeds 

• JPL SDR, NASA/Glenn Research Center SDR3000 
– Flight Tests and Demonstrations 

• CoNNeCT 

 
 



Physical Level 

Application/User Level 

Kernel Level 

Architecture 

• Waveforms (applications) 
– Covers from EM wave to data 

interface 
– Not just the modulation 

– Framing 
– IP routing 

• Operating Environment 
– OS (and its services) 
– Infrastructure 

• helpful stuff the OS doesn’t 
provide 

• Hardware platform 
– The metal, the electrons, the 

photons STRS Compliant Platform 

Waveform Application 

STRS Infrastructure 

POSIX  OS 

HW Device Drivers 

BSP 

Communication 
Hardware 

Platform 
Hardware 

Physical HAL Driver API 

IO System 

STRS API 

Radio Services 

Logical HAL 

OS Services 



The JPL Software Defined Radio 

Full Duplex S-band RF module 
Tx: 2.2-2.3 GHz, 5-10W output 
 2 x 10bit 50 MSPS DAC (I/Q) 
Rx:  2.025-2.12 GHz, 11 MHz BW 
 12 bit, 50 MSPS ADC 

GPS Receiver 
L1,L2,and L5 

Digital Processing 
66 MHz SPARC V8 
128 MByte SDRAM + 512 MByte Flash 
2x Xilinx Virtex II 3Mgate FPGAs 
SDRAM and Flash on each FPGA 

Control and Data Interfaces 
MIL-STD-1553B 
2 SpaceWire Links 

9 liters, 6.6 kg 
(28.2 L x 20.6 W x15.5 H cm) 
 
15 W Rx (typical) 
   +   2 W (GPS) 
   + 65W Tx S-band 
 



Other JPL SDRs in the family 

• Electra – now flying around Mars on Mars Reconnaissance Orbiter 
– 17.2 x 21.9 x 14 cm 
– 4.9kg, 63 Watts @ 28V 
– UHF (390-450 MHz) 

• Tx 8.5 Watts 
– 1-2048 kbps BPSK 
– CCSDS Proximity-1 

 Space Link Protocol 
– 24 MHz SPARC V7 
– Xilinx XQVR 1000 FPGA 
– EEPROM 

 
 

 
 

For more info read the paper: 
Edwards, et al., “The Electra proximity link payload for Mars relay telecommunications and 
navigation”, 54th Inter. Astro. Cong, Bremen Germany, 29 Sep 2003 
at: http://hdl.handle.net/2014/7832 

 and the book: 
Autonomous Software-Defined Radio Receivers for Deep Space Application edited by Jon 
Hamkins & Marvin K. Simon 
 at: http://descanso.jpl.nasa.gov/Monograph/mono.cfm  



JPL-SDR Hardware Overview 
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Baseband Processor 
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Hardware:Infrastructure:Waveform 
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Abstractions of Hardware 

PLL 
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Serial 
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Interface 

RTEMS 
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Application 
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status= Set_RxLO( double fMHz); 

PLL  A, M, R values 
status = ioctl(fp, RXA, A); 
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Strobe 

20 bit 
string 

General Purpose Processor GPP 
(SPARC) FPGA RF hardware 



FPGA interface abstractions 
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GPP Software Infrastructure 
• GPP = General Purpose Processor (distinguishes it from specialized signal processing) 
• Command ingest and dispatch 
• Heartbeat telemetry 
• File Transfers 

– Transfer from host to radio 
– Transfer from radio to host 

• Utilities 
– Debug (memory dumps) 
– File system (directory, delete, copy, etc.) 

• Hardware control 
– Power on/off for GPS slice and Solid State Power Amp (SSPA) 
– Reference oscillator configuration 

• Flash management 
– Copy from InMemory File System to/from Flash 

• Application management 
– Initialize, start, stop, configure, query 



STRS Application State Diagram 

• All STRS applications (waveforms) have 
the same basic state diagram for 
interaction 
– OE talks to App via APP_API 
– App uses OE by using STRS_API 

• Applications receive “configure” 
commands 
– Text based commands 

• configure sband 1 txFreq 2250 
• configure sband 1 bitRate 2048 

– Translated by infrastructure to 
• APP_Configure(handle, …) 

• Applications return results from 
“query” commands 
– query sband 1 txPLLlock 
– query connecthw 1 SSPAtemp 

 



Development process 

• Standard Toolchain 
– Standard gnu tools for cross development 
– Hosted on a Linux workstation, targeted to SPARC 

• JPL STRS OE 
– Libraries of utilities and infrastructure (device drivers) 
– Standard RTEMS 4.9.3 for the RTOS 
– Libraries for FPGA modules 

• Build process 
– Build for the target 
– Test on prototype BPM 
– Test on flight unit in Ground Testbed 
– Schedule for upload to spacecraft 
– Test in flight on ISS 



Development Workstation 

•Uses a prototype of the Baseband Processor Module 
•the ADC/DAC/DSP and SPARC 
•RF sections simulated with test equipment 

•Remotely accessible 
•Similar versions with the actual radio are possible 
•Simulated processors are available, but… the simulation doesn’t have 
the timing fidelity and it’s hard to do signal processing. 



Development PC 

High level flow 
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•JPL supplies *documentation*, OE libraries & Demo waveforms. 
•User supplies RTEMS, GNU tools, & their Waveform 
•User installs them on a development PC.  
•User then builds a SPARC image using the tools from the combination of: 

•  OE libraries, RTEMS and one or more applications. 
•The loadable image is then loaded into the radio and run. 
•Similar flow for FPGA: JPL libraries in Verilog and VHDL, you use the synthesis tool of your 
choice 



Prototype Target 
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PC 
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JPL-SDR 

Loading new software in Flight 
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CoNNeCT 

• Communications, Navigation, 
and Networking 
Reconfigurable Testbed 

• 3 SDRs, antennas, and a 
flight computer on 
International Space Station 

• Launch in Jan 2012, 
available for experimental 
operations 2012 and 2013 

• Experiment Announcement 
of Opportunity soon 

More info: http://spaceflightsystems.grc.nasa.gov/SpaceOps/CoNNeCT/ 



Another View of CoNNeCT 
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 Future of space SDRs 

• SDRs are here for most conventional needs 
– Many space radios are already software defined, but just not in-flight reconfigurable 

• Work is in progress to add network stacks and other functions 
– i.e. Disruption Tolerant Networking (DTN) & GPS 
– Limited only by processing resources and creativity of developers 

• SDRs are not a panacea 
– Highly specialized functions needing especially low power or mass and no 

network function 
• e.g. radio science coherent carrier only transponder  

– As technology advances, the “break even” line between specialized and 
general SDR will move 

• SDRs are challenging to specify and develop requirements for 
– How do you specify generalized “platform” requirements when the ultimate 

communication or application requirement won’t be known until after launch? 
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