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Abstract

We present a computational methodology (a novel
Nystrom approach based on use of a non-overlapping-
patch technique and Chebyshev discretizations) for
efficient solution of problems of acoustic and elec-
tromagnetic scattering by open surfaces. Our inte-
gral equation formulations (1) Incorporate, as ansatz,
the singular nature of open-surface integral-equation
solutions, and (2) For the Electric Field Integral
Equation (EFIE), use analytical regularizers that ef-
fectively reduce the number of iterations required
by iterative linear-algebra solution based on Krylov-
subspace iterative solvers.

1 Introduction

We consider two scattering problems by infinitely
thin open surfaces I' in R?, namely, (a) sound-soft
acoustic scattering and (b) electromagnetic scatter-
ing with PEC boundary conditions, including cases
in which I' contains geometric singularities (corners).
Our contribution generalizes the methods introduced
in [1], [3] for acoustic scattering by open surfaces with
smooth boundaries. In case (a) the scattered field
can be represented in the form u®(z) = [ Gi(z —
yv)@(y)ds(y) using the free-space Green’s function
Gi(z —y) = e*l#=Y| J4x|z — y| for » € R3\ T. This
representation leads to a uniquely solvable integral
equation of the first kind Sy = —u on T" [6]. In the
case when the boundary of I' is a smooth curve, the
density ¢ can be shown to be of the form ¢ = ¢"9 /w
where w(y) ~ +/d(y) and ¢"% is a smooth func-
tion [2]; here d(y) denotes the distance from y to the
open edge. In our numerical approach, we solve the
weighted integral equation

S0 = —uim®, (S,)(x) = /F Gr(x—y)

Y(y)
w

in the space of smooth functions. (As shown in [1],
[3], integral equations of the second kind, for both
Dirichlet and Neumann problems of scattering by

open surfaces, can be obtained through regulariza-
tion of weighted first kind equations, such as (1), by
means of composition with a certain weighted inte-
gral operators. However, as indicated in that refer-
ence, use of the resulting second kind formulations
for open surfaces, which is greatly beneficial for the
Neumann case, does not provide significant advan-
tages for the Dirichlet problem.)

In the PEC electromagnetic case the Electric Field
Integral Equation (EFIE) is posed in terms of the
unknown electrical current J. The component of J
along the open edge blows up as 1/w, while the nor-
mal component behaves asymptotically as w; the di-
vergence of J, in turn, blows up as 1/w; see [5]. Pre-
vious related work [4] for the PEC case does not in-
clude use of the important singular edge behavior; in
our context we incorporate the edge singularities by
means of the ansatz J = WJ" where the singular
weight is defined in parameter space (u,v) as W =

(1 ) i o) = r

Here r = r(u,v) denotes a parametrization of the
surface I'. With these notations, our weighted EFIE
is given by Ty J™® = —n x E"™° where

Twd ™ = ikn x / G|z — y|)WI™ (y)ds(y)
r
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The spectral properties of the operator 7y are
extremely unfavorable for Krylov subspace iterative
solvers. We address this issue by using a left regular-
izer 7, defined as

T.a— ikn x /F Gillz — y)Wal(y)do(y)
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r
and solve the regularized equation EFIE-R:
T, Ty I = —T,(n x E"°). (2)
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Figure 1: Electromagnetic fields scattered by an
annular antenna element of diameter 8A—x
component (top) and z component (bottom);
8 x 16 x 16 unknowns, 13 iters/17m45sec, GMRES
residual 1073, solutions accurate with 3 digits in the
far field.

In the numerical evaluation of the composition 7,7y
(which is performed in a sequential manner) it is crit-
ical to take into account the fact that, by design, the
composition of the last term of 7y with the last term
of 7,,, both of which are highly singular, actually van-
ishes.

2 Numerical Results

For the numerical solution of equations (1) and (2)
we use a Nystrom discretization based on integra-
tion patches that do not overlap. The integration
surface I' is tiled by polygonal regions that can be
discretized with high-order accuracy by means of co-
sine transforms and Chebyshev approximations. We

Figure 2:  Scalar fields scattered by a configuration
consisting of two parabolic antennas (infinitely thin
open surfaces) and a closed cube.

Figure 3: Electric fields diffracted by reflectarray
antennas consisting of 5 x 5 (left) and 4 x 4 (right)
infinitely thin square elements.

use (u,v) patch parametrizations for which the open
edges always correspond to v = £1, and we thus use
d = 1 — v? together with underlying Chebyshev dis-
cretizations in the (u,v) space. In this manner the
Jacobian associated to this parametrization annihi-
lates the singularity in the weight matrix (since in
this framework W = W’ /sinv where W' is a
smooth matrix function of u and v). Our high-order
integration algorithm consists of two main stages cor-
responding to the treatment of well-separated inter-
actions and adjacent/singular and near-singular in-
teractions. For each integration patch, we treat the
interactions of the first type by means of Clenshaw-
Curtis-type integrations for all observation points
sufficiently far away from the integration patch. The
use of Chebyshev polynomials as spectrally accu-
rate approximations of smooth densities in any given
patch makes possible to resort to finite-difference ap-
proximations for the derivatives of the densities via



2D Chebyshev interpolators. On the other hand, the
second stage of our algorithm consists of (a) Singular
integration, based on polar coordinate transforma-
tions, which are used around each observation point
in a given patch using floating partitions of unity;
and (b) near singular integration: for smooth por-
tions of the scattering surface and for observation
points close to but outside the integration patch, we
perform polar integration centered at the observation
point.

In Figures 1 and 2 we present results obtained by
means of the various algorithms described above.
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