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Abstract: This paper demonstrates the use of Neural Networks 
as a device modeling tool to increase the reliability analysis 
accuracy of circuits targeted for space applications. The 
paper tackles a number of case studies of relevance to the 
design of Flight hardware. The results show that the proposed 
technique generates more accurate models than the ones 
regularly used to model circuits. 
 
1. Introduction 

 
This paper provides a novel approach to the problem of 
reliability in circuit design, which specifically addresses the 
challenges of hardware design for space applications or Flight 
hardware. Flight hardware design cycle is deeply impacted by 
the analysis of electronic circuit behavior across the specific 
Mission’s “environmental extremes”. Particularly, as a critical 
step in the design process, the Worst Case Analysis (WCA) of 
electronic hardware provides a quantitative assessment of 
circuit performance, accounting for the manufacturing process 
variability and the unavoidable dimensional tolerances as well 
as the mission-specific environmental, aging, and radiation 
effects. The WCA ascertains flight hardware quality and 
reliability, while determining its operational limits and 
margins.  Essential for the WCA is the availability of accurate 
SPICE models for electronic components used in the circuits.  
  
Device modeling requires an understanding of device physics 
in conjunction with a thorough knowledge of the circuit.  
However, detailed device models are rarely available from the 
manufacturer, and usually have limited accuracy.  An accurate 
and detailed SPICE model development for a device from 
generally a limited set of available (measured) 
characteristic/behavior of the device under a set of controlled 
environmental conditions is an involved, labor-intensive 
process, and typically results in a cost of several thousand 
dollars per component. The cost of the comprehensively 
modeled electronics to a mission therefore would become 
enormous considering that hundreds of different components 
are used on each circuit board, and a large number of different 
boards are typically required for each mission.  Furthermore, 
SPICE models cannot be easily re-used across different 
missions due to differences in mission environmental 
requirements.  Due to cost and time constraints, a full suite of 
accurate models are rarely generated during reliability analysis 

effort, which often results in an extended design time due to 
design changes from Prototype to Flight. 
  
This paper presents an Artificial Neural Network (ANN) [1] 
autonomous modeling tool for electronic components that for 
the first time produces and delivers accurate SPICE models of 
electronic devices at a variety of environmental conditions 
from limited or incomplete test data, as needed by a given 
mission scenario. This method was applied in the modeling of 
a variety of devices typically used in flight circuits, such as 
diodes zeners, voltage regulators and bipolar transistors. As 
opposed to built-in/regular or manufacturer provided models 
based on device physics, ANNs produce behavioral model 
consisting of non-linear equations.  The results show that 
ANNs produce a more accurate model than the ones 
conventionally used: the error between simulation and actual 
behavior decreasing from approximately 30 % or more to less 
than 5% in some cases. Moreover, ANN modeling also 
allowed the capture of critical circuit limitations that were 
ignored when using conventional or manufacturer provided 
SPICE models. 
 
2. ANN Approach for Device Modeling 

 
Artificial Neural Networks (ANNs) are employed as a 
modeling tool to generate SPICE simulation models for 
electronic components. ANNs can be trained to learn non-
linear relationships from corresponding measured or simulated 
data, even if they are incomplete. This paper particularly 
focuses on the reliability challenges of circuits for space 
applications, where ANNs generate simulation models that 
account for variables not accurately modeled conventionally, 
mainly temperature, initial device tolerance and radiation 
effects of Total Ionization Dose (TID).  Previous work [2, 3] 
also proposed the use of ANNs to generate SPICE models for 
electronic devices; however, this article is the first to include 
environmental variables as inputs to the modeling tool; and 
also to use ANN modeling to specifically tackle circuit 
reliability issues. 
 
During a mission, circuit components will be subject to 
different levels of radiation and temperatures; the component 
response will also be probabilistically affected by aging and 
random factors. ANNs can efficiently capture the device 



 

response under different conditions from real measurements, 
Worst Case Database (WCDB) specific for the particular 
Mission environment; and screening data from manufacturer. 
Moreover, this paper shows examples where ANN produces 
tunable models that allow the designer/analyst to simulate a 
device for Nominal, Worst Case Minimum and Worst Case 
Maximum conditions.    
 
After successful training, the ANN will produce a device 
model that can be incorporated into SPICE netlist using 
specific built-in functions for behavioral modeling: voltage 
controlled and current controlled sources. The ANN derived 
model is defined as a set of non-linear equations with real-
valued coefficients or weights. These mathematical models are 
seamlessly used to define the controlled sources. Figure 1 
provides an example of a typical ANN model equations as 
written in SPICE format. 
 

 
Figure 1: Example of a typical ANN model transported into a 

SPICE controlled-source. 
 
3. Case Studies 
 
This section describes three relevant case studies for circuits 
and devices used in space applications. A Multi-Layered 
Perceptron (MLP) using Backpropagation [1] training method 
was used in all applications. The training data was prepared by 
a combination of real device measurements and calculations 
from Mission specific Worst Case Database [5], which 
considers the exact environmental conditions (temperature, 
radiation, duration) of a particular project. 
  
3.1  Zener Modeling 
Using the correct SPICE model of a Zener diode is critical for 
a circuit worst case analysis. This section provides a real 
example where an ANN model is used to improve the 
simulation fidelity and detect a reliability issue not identified 
when using regular SPICE model.  A simplified diagram of 
the circuit is shown in Figure 2. The Figure shows a power 
switching circuit used in a Flight circuit design that employs 
the 3.9V (VZ ) Zener. 

 

 
Figure 2: Simplified diagram of power switching 

circuit using 3.9V Zener.     
 

Depending upon a control circuit, a load will be powered 
either by the switch S1 or by the Zener Z1 signal paths. The 
value of the voltage VOUT delivered to the load is critical to the 
circuit overall functionality. When S1 is in OFF state, VOUT = 
12V – VZ.  Figure 3 depicts an actual measurement of the I x 
V transfer curve for the 3.9V Zener, which shows that the 
device presents a “soft knee” in the neighborhood of VZ. For 
the particular application in Figure 2, the device operating 
current is approximately 30 mA, which corresponds to an 
operating voltage around 3 V as of graph in Figure 3. 
However, the SPICE Zener regular model generates a “hard 
knee” I x V in the neighborhood of VZ, as also shown in  
Figure 3. 
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Figure 3: Measured (traces) and SPICE model (full line) I xV 
transfer curve for 3.9V Zener. 

 
The SPICE model shown in Figure 3 produces the expected 
voltage output of approximately 8.1V (12V – 3.9V) to the load 
represented in Figure 2, whereas the measured value is 9V, 
since the actual value of VZ is 3V instead of 3.9V. This 
modeling inaccuracy caused an erroneous behavior of the 
circuit in the second stage.  
 
A 3-layer backpropagation ANN was employed to replace the 
SPICE physical model. The ANN topology is shown in Figure 
4. It consists of 2 x 4 x 1 topology, i.e., 2 input neurons, 4 
hidden neurons and 1 output neuron.  As shown in the Figure 
below, this ANN models the Zener current  IZ  as a function  
of two inputs, temperature and voltage applied to the Zener 
VIN. The ANN training data was collected both by 
measurements and also by data from a Mission specific Worst 
Case Database, the latter being used to provide accurate data 
on the diode temperature dependency.  

.subckt ann_diode 100 200 
 
Gdiode1 100 200 VALUE =  {(V(95) )} 
   
E1 1 0 VALUE = {((V(100,200) + 5)/10 )} 
V2 2 0 0.0V 
E21 21 0  function 0.757871 +(-10.335355 * 
V(1)) +(-0.801717 * V(2)) 
E22 22 0  function -15.304038 +(27.702725 * 
V(1)) +(0.794741 * V(2)) 
E81 81 0  function -17.333016 +(-8.673347 * 
(1/(1 + exp(-V(21))))) +(10.524507 * (1/(1 
+ exp(-V(22)))))  
.ends ann diode 
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Figure 4: ANN Topology employed for 3.9V Zener Modeling 

 
The ANN model captures the actual device transfer function 
and the “soft knee” very accurately, as shown in Figure 5 at 
25C.   
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Figure 5: Comparison between ANN (trace) and actual (full 
line) device responses at 25oC. Y axis is current in mA; X axis 
is the Zener input voltage. 

 
As the authors included the ANN behavioral model in the 
circuit netlist depicted in Figure 2, the SPICE simulation 
produced the correct output voltage of 9V, i.e., VZ equal to 3V 
at 30mA load. The Zener was later replaced to fix this issue. 

 
3.2   2.5 V Voltage Regulator Modeling 
 
Voltage regulators are commonly used in space applications. 
Since this device is susceptible to Total Ionization Dose 
(TID), it is critical that the reliability analyst accounts for this 
effect: even small deviations from the nominal value of 2.5V 
may cause the circuit to fail unexpectedly. An ANN was 
trained using actual measured data for this device for different 
radiation levels (up to 1Mrad of TID); and also different 
regulator currents IREG (from 200 uA to 10 mA). An extra 
binary input was also applied to the ANN, representing the 
state, powered or unpowered, of the device during irradiation. 
Figure 6 depicts the ANN topology. 
 
Figure 7 compares the response between the ANN and the 
measured regulator output. Each training sample as indicated 
in the X axis consists of a different combination of regulator 
current and TID level.  Four devices were used for ANN 
training, serial numbers SN2, SN3, SN4 and SN5. The graph 
in Figure 7 clearly shows a difference in behavior between 
SN2/SN3 and SN4/SN5: SN1 and SN2 were unpowered 
during irradiation (Bias = 0); and SN4 and SN5 were powered 
(Bias = 1).  
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Figure 6: ANN Topology for 2.5 Regulator Modeling.   
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Figure 7: ANN Outputs (trace) against actual device output 

(full line). Y axis shows the regulator voltage output in Volts; 
X axis is the sample index. 

 
After training, the maximum error between ANN output and 
each training sample was 0.58 %; and the average error was 
0.15 %. The ANN model was later incorporated into a netlist 
representing an actual Flight circuit, the simulation running 
successfully. 
 
3.3  Bipolar Transistor 
 
Bipolar transistors are also widely used in space related 
applications. Regular or manufacturer provided SPICE models 
do not capture variations of some relevant transistor 
parameters with temperature and radiation.  These models also 
do not incorporate initial tolerance and End-of Life (EOL) 
effects. The following parameters have been selected as the 
most critical for the circuits investigated: Base-emitter 
junction voltage, VBE; and transistor gain, .  

 
Instead of using a single ANN to model a transistor, this paper 
approach uses two different ANNs to model each of the above 
parameters. This is accomplished by using the Ebers-Moll 
transistor model [4].  The base-emitter junction characteristics 
is modeled through diode D1 using this model; and the 
transistor gain  is modeled through the controlled current 
source from collector to the base. The impact of these 
parameters is discussed in the next sections. 
 
 



 

3.3.1 Modeling Base-Emitter Junction 
 
This section describes the ANN base-emitter junction model, 
which is similar to ANN diode modeling. Particularly, an 
accurate model of the voltage VBE,sat is critical for applications 
where the transistor is used as a switch (either cut-off or in 
saturation), as shown in the simplified block diagram in Figure 
8. If the maximum low-output value VOL of the digital buffer 
driving the bipolar transistor exceeds (VBE,sat)Min, then the 
transistor can turn-on unexpectedly, possibly causing 
equipments to turn-on accidentally. This is just an example 
where an inaccurate SPICE model for the BE junction can  
produce an error in the circuit WCA. 

 
Figure 8: Simplified diagram of a typical power circuit where 
the bipolar transistor acts as a switch. 

 
The value of VBE,sat strongly varies due to the device initial 
tolerance, a factor that is not usually captured by built-
in/regular SPICE or manufacturers models. In order to 
illustrate this variation, calculations for a specific transistor 
establishes VBE,sat between 0.47V and 1.4V [5] when  
accounting for initial tolerances. On the other hand, built-in 
simulation models produce a variation between 0.8V and 
1.0V, corresponding to an error of at least 30 % to the targets. 
This section presents an ANN behavioral model that can be 
tuned by the user to produce Minimum, Nominal or Maximum 
values of VBE, SAT, therefore enveloping all possible behaviors 
for this parameter.  A compact ANN (2 x 4 x 1) was used:  it  
receives two inputs, the input voltage applied at the junction, 
VBE; and the initial tolerance Tol. The latter is used to produce 
a configurable model, defined as: Minimum VBE when Tol 
equal 0; Nominal VBE when Tol equals 0.5; Maximum VBE 
when Tol equals 1.0. The ANN output is the BE diode current 
IE. Figure 9 depicts the training profile. 
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Figure 9: BE junction ANN Model: Training Profile. From 

left to right, Minimum, Nominal and Maximum curves.  
 

The training profile encompassed the three cases described 
above. The VBE,SAT parameter  corresponds to the VBE value at 
the threshold of the BE diode conduction. The ANN model 
was incorporated into a SPICE netlist as described in Figure 8; 
and the results are shown in Figure 10. 
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Figure 10: Simulation results for ANN base-emitter junction 

transistor model. 
 

Figure 10 illustrates the circuit response as the driver output 
switches between 0 and 3.5V, driving the transistor in and out 
of saturation; and the tolerance input  slews from 0.0 to 1.0. It 
can be seen that the ANN model produces VBE,SAT ranging 
from 0.5V (Tol = 0) and 1.4V (Tol = 1.0), which approaches 
the real behavior of the transistor.    
 
3.3.2 Modeling  
An ensemble of three ANNs are used to model the value of the 
transistor gain , which is a function of the temperature, Total 
Ionization Dose and transistor current.  The three ANNs 
respectively generate Nominal, Minimum and Maximum 
values for the gain. The ANN consists of 3 x 6 x 1 topology, 
the inputs being Total Ionization Dose (TID), transistor 
current (IC) and temperature (Temp); and the output being the 
transistor gain  .  
 
This paper used, as ANN training data, actual measured values 
for  at different temperatures (10 oC to 30oC), TID effects (up 
to 1Mrad) and transistor current conditions (0.5mA to 150 
mA) for the a specific commercial device. The data is further 
split into three sets based on the initial tolerance: Nominal, 
Minimum and Maximum. The initial tolerance is provided by 
a Mission specific Worst Case Database[5] and has a large 
impact in the transistor gain: for example, the gain changes 
from 100 to 400 at 10 mA as a result of tolerance effects only.  
The three ANNs provide the designer/analyst with three 
transistor models enabling a thorough simulation of the  circuit 
design corners. 
 
The 3-layers ANN was able to map the training data relatively 
easily: the training time was less than 5 minutes and the 
average error was 5.7 %. Figure 11 plots the ANN response 
against the measured data (target) for the Nominal gain. 
Similar results were achieved for the Minimum and Maximum 
cases. The graph vertical axis shows the transistor gain and 



 

horizontal axis shows the sample index. A total of 64 samples 
were used to train the ANN, each sampling representing a 
different combination of temperature, TID and transistor 
current values. The ANN was also able to respond to inputs 
not shown in the training phase, with a similar error margin as 
the one for the training phase. 
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4. Convergence Issues 

 
As of the cases studied above, the Neural Networks can easily 
be trained to capture the transfer function of the devices. 
Instead, the main challenge resides in the incorporation of 
ANN behavioral models into a SPICE. Normally, SPICE may 
produce convergence problems as the ANN behavioral models 
get more complex, thereby constraining the ANNs to a 
compact size. The number of neurons in the hidden layer was 
therefore a critical parameter in the cases above: too many 
neurons led to SPICE convergence issues; too few neurons led 
to a poor ANN performance in terms of error to the target 
behavior. It was verified that, by keeping the ANN hidden 
layer at twice the size of the input layer, we avoided 
convergence issues without degrading the ANN performance. 
Besides convergence issues, a large number of neurons in the 
hidden layer (e.g., more than twice as in the input layer)  can 
cause generalization problems, i.e., the ANN may respond 
poorly to inputs not shown in the training phase. Whenever 
replacing a physical by a behavioral model, care must be taken 
to ensure that the behavioral model does not contain 
singularities that could cause a convergence problem.  
 
Another potential pitfall observed for diode models refers to 
its leakage current, which is typically in the range of nano-
amps. The ANN may produce a model that shows a leakage 
current at the micro-amp level. Depending on the way the 
training data is normalized, this kind of discrepant model may 
still show a very small error to the target, but will produce an 
erroneous operating point when integrated into a circuit in 
SPICE. 
 
Another strategy to overcome potential convergence problems 
is to change the grouping of the ANN equations, particularly 
to avoid overflow errors. This is accomplished by 
consolidating one or more neuron output equations into only 
one circuit node, as opposed to having one circuit node 
associated to each output neuron equation as shown in Figure 

1. Overflow errors usually happened when the ANN 
exponential functions returned very large numbers, normally 
due to the fact that the SPICE algorithm would try an initial 
solution too distant from the circuit operating point.  
 
The above strategies were followed in addition to standard 
SPICE recommendations to overcome convergence issues, 
such as ramping up the power supplies and reducing the time 
step of transient analysis. 
 
5.  Conclusions 
 
This paper demonstrated the use of Neural Networks as a 
modeling tool to deliver accurate SPICE simulation of circuits. 
This modeling tool may have a major impact in the reliability 
analysis of aerospace related circuits, where accurate 
characterization of the devices under extreme environmental 
conditions (temperature, radiation, etc) is critical to the 
success of the project [6]. This paper also identified specific 
cases where the use of ANN behavioral models flagged worst 
case violation not normally flagged when using regular or 
built-in device models. 
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