Major Developments in Fortran Since 1977

Van Snyder

van.snyder@jpl.nasa.gov

Jet Propulsion Laboratory
California Institute of Technology

@

4 July 2011

Copyright (© 2011 California Institute of Technology. Government sponsorship acknowledged.

Summary

The major developments in Fortran since 1977 are

» Derived types — a.k.a. structures or records
» Parameterized types
» Array processing

» Dynamic memory — pointers, allocatable,
automatic

» Modules and submodules
» Object-oriented programming

» Coarrays

Derived types

Derived types in Fortran are types consisting of
components derived from other types.

type :: T
integer :: A
real :: B(10)
type(u) :: C

end type T

type(t) :: S(5)

Derived types (cont.)

Components of derived types are selected using %,
because “dot” was already in use to spell several
operators.

sha = 10 ! An array operation
! described later
print *, sa

Parameterized types

Types in Fortran can have “kind” parameters, which
are constants, and “length” parameters, which can
vary during execution.

Fortran 77 provided a length parameter for
character variables.

Fortran 90 provided kind parameters for real,
complex, and integer variables. Fortran 2003
extended parameterization to derived types.

integer, parameter :: RK = kind(0.0d0)

real(rk) :: X(100)

integer, parameter :: R12 = selected_real kind(12)
real(r12) :: Y(100)

Array processing

Arrays have always been important in Fortran.

Major new array features after 1977 are

» Assumed-shape dummy arguments
» Array expressions and assignment
» Intrinsic functions to operate on arrays

» Elemental procedures

Assumed-shape dummy arguments

The extent in each dimension is assumed from the
associated actual argument.

Unless otherwise specified, the lower bound in each
dimension is 1, regardless of the bounds of the
actual argument.

The bounds are declared using a colon, or a lower
bound expression followed by a colon.

All of the bounds must be assumed.

real :: A(:,-1:)

Array expressions and assignment

Arrays can be elements of expressions.

If an array name appears on its own, it designates
the whole array.

A “section” of any dimension, or several dimensions,
can be specified by a triplet, consisting of the start,
end, and stride, separated by colons.

If the start is absent, the low bound is assumed. If
the end is absent, the high bound is assumed. If the
strid is absent, 1 is assumed.

print *, a(::2,:)

Array expressions and assignment (cont.)

Scalars can be combined with arrays. The effect is
as if the scalar were an array of the same shape,
with the same value in every element.

print *, 0.5 *x a(::2,:)

One dimensional arrays can be constructed in
expressions.

print *, [(i, i =1, 10)]

prints1 23456789 10

Intrinsic functions to operate on arrays

Most numeric intrinsic functions are elemental,
meaning they are applied to every element of an
array

print *, cos(0.5 * a(::2,:))
Many array reduction functions are provided

print *, maxval(0.5 * a(::2,:))

Elemental procedures

In addition to the elemental intrinsic functions
provided by Fortran 90, Fortran 95 allows programs
to define elemental procedures. They have scalar
dummy arguments. If invoked with array actual
arguments they are applied to every element of their
arguments.

elemental subroutine Sub (X, Y)
real(rk), intent(in) :: X
real(rk), intent(out) :: Y
y = 4.0rk * cos(x) + sin(x/2)**2 - 1
end subroutine Sub

Dynamic memory

Fortran 90 provided three kinds of dynamic memory

» Pointers — type, kind, and rank safe, but
otherwise like C pointers (except arithmetic on
them isn't allowed)

» Allocatable — No aliasing, so the optimizer does
a better job, and no memory leakage

» Automatic — created when a procedure is
entered

Pointers, allocatable variables, and automatic
variables, can be arrays. Pointers are “fat” — they
carry their bounds with them.

Dynamic memory (cont.)

ALLOCATE and DEALLOCATE statements create and
destroy dynamic objects — either pointer or
allocatable.

The NULLIFY statement nullifies pointers.

real, pointer :: P(:)
type(t), allocatable :: Q(:,:)
nullify (p)

allocate (p(6), q(-1:1,12))

Dynamic memory (cont.)

Pointer assignment copies pointer association
status, or causes a pointer to be associated with a
non-pointer variable. The variable needs the

TARGET attribute.

target :: A ! or real, target :: A(:,-1:)
p => a(3,:) ! P is the third row of A
I The bounds of P are -1:ubound(A,2)

Pointers are automatically dereferenced

print *, p ! Print the third row of A

Modules and submodules

Types, named constants (parameters), variables,
procedures, and a few other arcane things can be
put into modules.

module M
integer, parameter :: RK = kind(0.0dO)
end module M

Modules and submodules (cont.)

Things in modules can be used in other places.

module X
use M, only: RK
contains
subroutine X_Sub (A, B)
real(rk), intent(in) :: A
real(rk), intent(inout) :: B(:)

end subroutine X_Sub
end module X

Modules and submodules (cont.)

If a procedure is used from a module, it has explicit
interface, which allows checking that the type, kind,
rank, and number of actual arguments in a
reference matches the definition.

use X, only: X_Sub
call XSub ([1, 21, 43.0)

The call statement is rejected because the first
actual argument has to be a real scalar of kind RK,
not an integer array, and the second actual
argument has to be a real array variable of kind RK,
not a scalar constant of default kind (which is single
precision, not double precision).

Modules and submodules (cont.)

Submodules allow big modules to be broken into
pieces, and allow the interfaces of procedures to be
in the module, while the bodies are in submodules.

Separating a procedure body from its interface
limits compilation cascades, and allows the interface
to be published as definitive documentation without
publishing trade secrets in the procedure body.

Submodules are very much like Ada “private child
units.”

Object-oriented programming

Object-oriented programming in Fortran is modeled
on Simula. It provides

» Type extension

» Type-bound procedures

» Type-bound procedure overriding

» Polymorphism

» Dynamic dispatch

» Finalization

Object-oriented programming — Type extension

type(rk) :: Point
real(rk) :: X, Y
end type Point

type, extends(point) :: Color_Point
integer :: Color
end type Color_Point

Objects of type Color_Point have X, Y, and Color
components.

Object-oriented programming — Type-bound procedures

type(rk) :: Point

real(rk) :: X, Y
contains

procedure :: Draw => Monochrome Draw
end type Point

type (point (kind(1.0_rk))) :: Pixel
call pixelydraw ! calls Monochrome Draw (pixel)

Object-oriented programming — Overriding

type, extends(point) :: Color_Point
integer :: Color

contains
procedure :: Draw => Color_ Draw

end type Color_Point

type(color_point(kind(1.0_rk))) :: C_Pixel
call c_pixelldraw ! calls Color Draw (c_pixel)

Object-oriented programming
Polymorphism and Dynamic dispatch

class(point), pointer :: Pix

pix => pixel

call pixJdraw ! calls Monochrome Draw(pix)
pix => c_pixel

call pixldraw ! calls Color_Draw(pix)

Pix is polymorphic. It can be associated with an
object of type Point or any extension of that type.

Polymorphic objects have to be pointers,
allocatable, or dummy arguments.

Object-oriented programming
Polymorphism and Dynamic dispatch (cont.)

Polymorphic pointers and allocatable variables can
be allocated with a specified type that is the same
as the declared type of the object, or any extension

of it.

allocate (type(color_point(rk)) :: Pix)

Object-oriented programming — Finalization

type :: Finalizable

type(t), pointer :: Component => NULL()
contains

final :: Destroy_It
end type Finalizable

type(finalizable) :: F

When F ceases to exist (deallocated, a local variable
of a returning procedure, ...), Destroy It (F)
is called. One good reason to want this is to
deallocate F},Component.

Coarrays

... are the subject of another presentation ...

