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Rationale for Modeling and Mini-RF Overview 
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80 From Ostro, 2002  

CPR = 1 

If there is ice on the Moon like that 
at the poles of Mercury and Mars 
or like the Galilean satellites, then 
it would have echo enhancement 
of 10 or more and a Circular 
Polarization Ration (CPR) greater 
than unity. 
 
This is not yet observed on the 
Moon. 
 
Thus, can we generate models 
that predict how these otherwise 
strong signals are muted/masked 
by regolith? 
 

Rationale for Modeling 
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Chandrayaan-1 and LRO Mini-RF Radars 

Chandrayaan-1  

LRO 
Chandrayaan-1 and LRO were in polar 
orbits thus enabling the Mini-RF 
observations of polar regions. 
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 Mini-RF Objectives  
•  Discover and map near-polar putative water-ice deposits 
•  Characterize lunar surface, especially permanently shadowed areas 

 Radar parameters: 
•  S-band 13 cm wavelength / Angle of incidence (at the surface) = 39° ± 10° 
•  Resolution = 150 m / Looks = 16 (about the same as Magellan) 

 Radar Implementation 
•  Transmit right-circular polarization (RCP) 
•  Receive opposite (H and V) Linears and generate Circular Polarization Ratio 

  (CPR = RCP/LCP) via Stokes Parameters (CPR = (S1 – S4) / (S1 + S4),  
•  Expected Ice signature = High reflectivity, large CPR, and Stokes parameters 

 Imaging Strategies 
•  Strip maps on sequential orbits for 28 days converted to mosaics 
•  Swath width 18 km or more / Repeat left and right at both North and South Poles 

 Expected Results: 
•  Total reflectivity and CPR of both poles with imagery and/or scatterometry 

Chandrayaan Mini-RF Overview 
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BACK-UP 

Chandrayaan-1 and LRO 
Mini-RF Radar Parameters 

Chandrayaan-1  Mini-RF Operations – October’08 – August’09  
 
LRO Mini-RF Operations July’09 – December’10 
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Modeling Lunar Radar Backscatter Assuming 
Differences in Quasi-Specular and Diffuse 

Scattering Components 
 
Reference 
Modeling Radar Scattering from Icy Lunar Regoliths at 
13-cm and 4-cm Wavelengths, Thompson,  Ustinov, 
and Essam Heggy, JGR, Jan, 2011 
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Average Lunar Radar Behavior 
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Modelling Lunar Radar Scattering 
Diffuse and Specular Components 
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Note – Only Diffuse scattering contribute to SC  
(Same-Sense Circular) echoes 
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Assumed Lunar Ice Conditions  
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Examples of Blocky and Icy Craters 
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From  Spudis et al., 
Initial results for the 
north pole of the Moon 
from Mini-SAR, 
Chandrayaan-1 
mission, GRL, 2010. 
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Preliminary Comparison of Model 
with LRO Mini-RF Polar Data 
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Modeling Results – Rough, Fresh Crater 
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Modeling Results – Icy Crater 
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Double Bounce – Anomalous Crater 
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Courtesy of Keith Raney, APL, 2011 
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Modeling Results – Anomalous,  
Double Bounce Crater 
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Modeling Results: Alpha vs. Gamma 
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Alpha = SC Enhancement   /   Gamma = OC Enhancement 
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Modeling Results: Weighted Sum vs. Ratio 
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Alpha = SC Enhancement   /   Gamma = OC Enhancement 
Ratio = Alpha/Gamma  - Proxy for Circular Polarization Ratio (CPR)        
Weighted Sum = 0.12 Alpha + 0.88 Gamma = Total Power Enhancement 
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Rules of Engagement / Next Step 

 For Blocky Craters: 
Alpha > 1.5; Gamma > 1.0 or 1.25 
Ratio (Alpha/Gamma) > 1.25 or 1.5 
Weighted Sum > 1.0 or 1.25 
  
For Icy Craters: 
Alpha > 1.0 or 1.25; 0.5 < Gamma < 1.0 or 1.25 
Ratio (Alpha/Gamma) > 1.5 
0.5 < Weighted Sum < 1.0 
  
For Anomalous, Double Bounce Craters: 
Alpha < 1.0; Gamma < 0.5 
Ratio (Alpha/Gamma) > 1.5 
Weighted Sum < 0.5 

•  Next Step: Produce North and South Polar mosaics using automated 
identification of Icy, Rough Fresh and Double Bounce classes of 
craters 
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Concluding Remarks 

•  We tested our model assuming diffuse and specular scattering 
components by examining 12 polar and 4 non-polar craters 
using LRO Mini-RF data for the Lunar North Polar Region 

•  Results indicate that there are 3 separable classes of craters 
based upon their SC enhancement (Alpha) and OC enhancement 
(Gamma) 

–  Icy  
– Rough Fresh 
– Double Bounce (Anomalous) 

•  Next Step: Produce North and South Polar mosaics using 
automated identification of Icy, Rough Fresh and Double 
Bounce classes of craters 

 


