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ASKAP and VAST

e Australian SKA Pathfinder

* Observes radio sky in single day
* sub-mly sensitivity

* 5second cadence

e Variables and Slow Transients

* Real-time data processing pipeline

* Objects of interest: SNe, Novae, IDVs, ESEs, etc.

* Potential to discover new objects and object classes
 ASKAP BETA online in 2012
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Study Goals

* |dentify
— feature representations
— learning algorithms

e Estimate classification performance per
— source type
— observing strategy



Simulated Radio Source Types

e 200 per source type, sampled 1x a day, SNRat 3, 5, 7, 10 o,
400 days
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Observational Strategies
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Classifiers and Features

* Support Vector Machine ¢ Frequency Domain
e Decision Tree — Lomb-Scargle Periodogram

. (LSP)
Ratldom Forest — Haar Wavelets (WLET)
* Naive Bayes  Statistical

* Logistic Regression Representations (STAT)

— Moment statistics
— Non-periodic features from

[1]
 Time observations (TME)
 LSP+WLET+STAT (all-reps)

e TME + LSP+WLET+STAT
(all)

[1] Richards et al. (2011) On machine- learned classification of variable stars with
spdrse and noisy time-series data.“arXivTro1:1559



Archival: Accuracy by Feature

Y-axis measures
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Accuracy

Archival: Accuracy by Classifier
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Source Classification
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Archival: Class Confusions
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Archival: Conclusions

e VAST GP achieved same classification
performance with % observations

* Best performers: SVM using STAT+LSP+WLET

 Two major confusion groups:

* BG, IDVs, ESE
* Sne, Novae, Flare Stars (RSCVn and dME), XRBs



Online: Methodology

. Train on full archival knowledge, test on
partially-observed

. Train and test on partial observations

. Delay-Sensitive Ensemble Classification
(DSEC)
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Online: Methodology

* Up to 30 days VAST Wide observations
* Features: time, stat
* Classifiers: J48, Random Forest



Online: Results (Method 2)

* Average 30%

stats features: RandomForest
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Online: Results (DSEC)

(wide) RandomForest DSEC (8 classes), 10-fold CV
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Future Work

VAST Memo

Improve results, focus on additional feature
representations

Benchmark methods on optical data sets
Integration into VAST data processing pipeline



