V6 CO2 Retrieval Development

NASA Sounder Science Team Meeting, November 13-16, 2012
Activities – V6 CO2 Development

• **Channel selection**
 - Developed tools to support optimization of channel subsets to better constrain the partial columns of the atmosphere which they represent
 - Common library of software modules shared with optimized retrieval code
 - Ingest model atmospheres and AIRS V5 and V6 PGE output
 - Compute channel-by-channel profiles of weighting functions, contribution functions and Jacobians
 - Sensitivity analysis to optimize channel sets continues in collaborative effort with Paul Dimotakis, Zhijin Li and Ilana Gat

• **V6 PGE-compatible multi-layer unified CO2 retrieval code**
 - Developed a single post-processing CO2 retrieval PGE capable of retrieving CO2 in one or more partial columns of the atmosphere independently
 - Execution options chosen via environmental variables
 - Channel lists, priors, SARTA version, QA filtering rules and thresholds
 - Mid-troposphere and mid-stratosphere codes implemented
 - Future addition of lower-troposphere easily accommodated
 - Capable of ingesting V5 and V6 physical retrievals and L1B/L2 CC radiances
 - Can use SARTA V107, V108 or V6
 - V5/SARTA V107 mode output digitally identical to V5 Operational PGE output

• **V6 testing**
 - Optimizing channel set selection/latitude weighting and QA filtering
Channel Selection Issues
(sensitivity analysis collaborators: Dimotakis, Li and Gat)

- Sensitivity analysis reveals pressure layer of Jacobian peak of V5 VPD tropospheric CO2 channels is a function of latitude. In addition, the movement of the high latitude tropopause to lower altitudes in January/April increases fraction of TOA radiances in CO2 channels function contributed by stratosphere.

- Solution: modify channel set to shift sensitivity peak lower and minimize stratospheric tail structure; weight channels according to location of Jacobian peaks to maintain pressure level position in atmospheric column.
Channel Selection Analysis
(sensitivity analysis collaborators: Dimotakis, Li and Gat)

• **Channel Sets**
 • **Mid-Trop**
 • Jacobians of V5 operational channel set peaks higher in troposphere than contribution functions, hence connection to surface CO2 flux weaker than initially believed
 • Preliminary channel set resulting from Jacobian sensitivity analysis results in increased sensitivity to ΔCO2
 • Now optimizing set so Jacobian peaks occur lower in the troposphere and in the same pressure layer for all latitudes (requires latitude dependent channel weighting)
 • **Mid-Strat**
 • Jacobians of initial test set identified via contribution functions not well localized
 • Preliminary channel set based on Jacobian sensitivity analysis results in increased sensitivity to ΔCO2 that is more localized in atmospheric column
 • **Lower Trop**
 • Channels chosen using contribution functions exhibit Jacobians whose peaks occur higher in the troposphere than desired
 • To Do: identify and optimize channel set(s) to shift Jacobian peaks as near to the surface as feasible

Note:
• VPD algorithm gives full weight to the measured radiances
 • Therefore channel contribution functions were employed as the channel selection criteria
 • VPD seeks to minimize the difference between an atmospheric state and the radiances
 • Averaging kernels/Jacobians provide ΔCO2 sensitivity information desired by customers studying surface flux
 • Therefore channel selection must primarily be carried out via Jacobian sensitivity analysis
Additional Channel Selection Issue

- SARTA and GENLN2 calculated TOA radiances for same atmospheric state are inconsistent for some channels
 - mid-trop CO2 retrieval channels: likely due to GENLN2 line mixing problem at the 721 cm\(^{-1}\) Q-branch
 - mid-strat CO2 retrieval channels: likely due to GENLN2 errors in the 670 cm\(^{-1}\) R-branch
- Additional line-by-line analysis to ensure no problematical channels are used for retrieval
• RTA Selection
 • V6 CO2 retrieval code executes all SARTA versions: V107, V108 and V6
 • Operational V5 CO2 retrieval using V107 SARTA execution time = 5 min/granule/CPU
 • Optimized V6 CO2 retrieval using V108 SARTA execution time = 3 min/granule/CPU
 (this will be the delivered operational CO2 RTA)
 • Optimized V6 CO2 retrieval using V6 SARTA execution time = 2.5 hr/granule/CPU
 (this will be revisited in future to develop a workaround)

• Challenge of V6 SARTA
 • Dynamic recalculation for all 2378 channels, once for every profile passed to the V6 SARTA
 • Updates y-axis offset, due to dynamically changing Doppler shift and module baseline drift
 • Addition of channel-specific deltas from A/B weights table
 • Executed for every perturbation of T, q, O3, CO2 in each iteration step of VPD
 (300 to 500 times/cluster CO2 retrieval depending upon number of iterations required to converge)

• Compromise choice: V108 SARTA
 • Forward calculated radiances differ from V6 by ≤ 1 %
 • Test results: CO2 retrievals differ from those which result using V6 SARTA by 0.1 ppm to 0.5 ppm
V6 CO2 Retrieval Status and Testing

- **V5/SARTA V107 mode assimilating V5 L2 data**
 - Compared against operational code retrievals at each step of restructuring/consolidation of PGE to ensure digitally identical output

- **V6/SARTA V108 mode assimilating V6 L2 data**
 - Supports calculation of Jacobians as well as of averaging kernels
 - Expanded QA for enhanced dynamic filtering and quality control
 - Uses expanded QA and error reporting provided in V6 L2 products
 - Extracts additional information from SARTA
 - Example: fraction of TOA radiance arising from surface, troposphere, stratosphere
 - Radiance bias correction applied in CO2 V5Op is unnecessary in V6 CO2 retrieval
 - Bias trend of L2 physical retrieval T_{air} against radiosondes present in V5 has been substantially mitigated in V6

- **Initial retrieval results assimilating V6.0.2 Level 2 data products**
 - Error in QA filter implementation drastically reduced yield --- Oops!
 - V6 CO2 retrievals agree well with Matsueda and V5Op retrievals for $|lat| \leq 40^\circ$
 - Deviation at high northern latitude greater in Jan/Apr (-5 ppm to -10 ppm) than Jul/Oct (-2 ppm to -5 ppm)
 - CO2 discrepancy between V5Op and V6 at high northern latitude is under study
 - Currently rerunning with correct QA filter implementation to regain yield
 - Next: optimize channel set and install weighting as a function of latitude to minimize change in location of retrieved layer in the atmospheric column from equator to pole
V6 VPD Surface Emissivity Retrieval Development

- Accurate accounting of surface contribution required in the lower troposphere CO2 retrieval algorithm. V6 L2 surface emission better than that of V5, but its solution must be included in VPD
 - A module solving for the surface emissivity is being developed

Some Retrievals are Successful

Some Retrievals are Problematical
Zonal Average V5Op and V602 CO2 and Yield
(note: Global Average DCO2 2003->2011 = 16 ppm)

V5Op CO2

V602 CO2

(V602-V5Op) CO2

V5Op Yield

V602 Yield

(V602 Yield)/(V5Op Yield)

2011 falloff due to AMSU channel 5 degradation

reduced yield due to QA filtering error

2011 falloff due to AMSU channel 5 degradation
Zonal Average V5Op and V602 CO2 and Yield
(note: Global Average DCO2 2003->2011 = 16 ppm)

V5Op CO2

V602 CO2

(V602-V5Op) CO2

V5Op Yield

V602 Yield

(V602 Yield)/(V5Op Yield)

2011 falloff due to AMSU channel 5 degradation

reduced yield due to QA filtering error

16 ppm

16 ppm
Zonal Average V5Op and V602 CO2 and Yield
(note: Global Average DCO2 2003->2011 = 16 ppm)

V5Op CO2

V602 CO2

(V602-V5Op) CO2

V5Op Yield

V602 Yield

(V602 Yield)/(V5Op Yield)

reduced yield due to QA filtering error

2011 falloff due to AMSU channel 5 degradation

16 ppm
Zonal Average V5Op and V602 CO2 and Yield
(note: Global Average DCO2 2003->2011 = 16 ppm)

V5Op CO2

16 ppm

V602 CO2

16 ppm

(V602-V5Op) CO2

2011 falloff due to AMSU channel 5 degradation

V5Op Yield

reduced yield due to QA filtering error

V602 Yield

(V602 Yield)/(V5Op Yield)
FY 2013 Plan

- **V6 VPD CO2 PGE staged delivery**
 - **Mid-Troposphere**
 - Validation runs against aircraft campaigns: INTEX, COBRA, ARCTAS, HIPPO
 - Deliver operational mid-trop V6 CO2 retrieval February, 2013
 - Will contain early version of mid-strat code, which will not be executed for production
 - **Mid-Stratosphere**
 - Validation run against SCIAMACHY
 - Deliver operational mid-strat V6 CO2 retrieval upgrade May, 2013
 - Allows PGE to be operated in strat CO2 retrieval mode
 - **Lower Troposphere**
 - Develop new channel set and QA
 - Develop ocean surface emission module
 - Incorporate into operational V6 CO2 PGE code and perform initial validation study against HIPPO
 - Deliver research version in V6 Op CO2 PGE for assessment September, 2013