Irreducible Tests for
Space Mission Sequencing Software

Lisa Ferguson'
NASA Jet Propulsion Lab, Pasadena, CA, 91125

I. Introduction

As missions extend further into space, the modeling and simulation of their every ac-

tion and instruction becomes critical. The greater the distance between Earth and the

spacecraft, the smaller the window for communication becomes. Therefore, through
modeling and simulating the planned operations, the most efficient sequence of com-
mands can be sent to the spacecraft. The Space Mission Sequencing Software is being
developed as the next generation of sequencing software to ensure the most efficient
communication to interplanetary and deep space mission spacecraft. Aside from efficien-
cy, the software also checks to make sure that communication during a specified time is
even possible, meaning that there is not a planet or moon preventing reception of a signal
from Earth or that two opposing commands are being given simultaneously. In this way,
the software not only models the proposed instructions to the spacecraft, but also vali-
dates the commands as well.

To ensure that all spacecraft communications are sequenced properly, a timeline
is used to structure the data. The created timelines are immutable and once data is as-
signed to a timeline, it shall never be deleted nor renamed. This is to prevent the need for
storing and filing the timelines for use by other programs. Several types of timelines can
be created to accommodate different types of communications (activities, measurements,
commands, states, events). Each of these timeline types requires specific parameters and
all have options for additional parameters if needed. With so many combinations of pa-
rameters available, the robustness and stability of the software is a necessity. Therefore a
baseline must be established to ensure the full functionality of the software and it is here
where the irreducible tests come into use.

II. Background

The Space Mission Sequencing Software has been under development for some
time. In the past, error checking had been left to a series of critical feature tests and
helped establish a functioning baseline. With the newest version of the software, these
tests were no longer adequate to test all of the new features. A new set of tests needed to
be created in conjunction with the past tests to establish a firmer baseline that could only
be established once every critical feature had been tested. These new tests would be irre-
ducible, testing only the most critical features. With these requirements, the irreducible
tests were created.

! Summer Intern, Modeling & Verification, NASA Jet Propulsion Lab, Pasadena, CA



I1I. Objective

The creation of the irreducible tests stemmed from a list of features that were
deemed to be crucial to the software’s baseline functionality. If a single irreducible test
fails, the software contains errors that must be repaired before any further software opera-
tions are preformed. The irreducible tests aim to become a basis on which the functionali-
ty of the software can be determined. While there is currently software implemented to
create a baseline, the irreducible tests are updated to the latest version of the software and
run in conjunction to the current baseline software. By always establishing functionality
before running the requested software commands, efficiency is ensured by catching errors
before the software hangs upon them.

IV. Approach

Previously, baseline software had been implemented, but it was outdated and
cumbersome. However, this software became the basis upon which the irreducible tests
were modeled. Using both the previous tests and the list of irreducible features, the irre-
ducible tests were created with the goal of absolute succinctness and efficiency. With
minimum lines of code the creation, checking, and deletion of timelines is achieved. To
expedite the checking of the metadata, present in all timelines, or of data that can be in-
serted into timelines, generic scripts were written to be called and preform the checks.
This allows for easy error checking and makes the individual tests easy to read because
only the creation and deletion of the timelines (along with data insertion and reading if
necessary) are dealt with in the actual test script. The actual checking of the (meta)data is
processed outside the script, thus insuring a uniformity among the data because it is all
ran through identical checks making any anomalies immediately noticeable.

Check
(meta)data
L .

Create Delete

Timeline i Timeline i

Figure 1: The checking of the metadata and data is preformed outside
the script that creates and deletes the timeline.

The timelines themselves are created using URLSs to ensure cross-platform func-
tionality; timelines can be created, manipulated and deleted, viewed, and deleted on any-
thing with a browser. To make the URLs immune to the inevitable server migrations and
changes in user namespaces, the base URL is defined by global variables. In this way,
one file can be updated with the changes for the URL and the changes are perpetuated
throughout all of the tests. This makes changes between users and servers nearly effort-
less and does not require updating the individual irreducible tests. From the base URL,
parameters are added to specify the type of timeline being created, the time system de-
sired, along with the value type and time format. The timeline type is the parameter that
defines which other parameters are required and which become optional. For all timeline



types a timeline type, time system, and security bit vector are required. For example, the
timeline type state requires both a value type and an interpolator type in addition to the
standard required parameters. If all the required parameters are met, the optional parame-
ters, unless otherwise defined, are set to their default values.

Timeline Type State

i | T i
Required
Parameters

Interpolator
Type

Security Bit

Vector Value Type

Time System

Optional Parameters  Time Format

Figure 2: The structure of a timeline with its required and optional parameters.

Data may be inserted into created timelines to simulate previously requested
spacecraft operations. Each timeline type can have data inserted into it, although each
timeline type requires the data to be formatted differently. The exceptions to this are state
and measurement timelines, which share the same data format. Data is stored in HTML
files, so that they can be viewed on any browser. For testing purposes, the data is ran-
domly generated using scripts tailored to each data type. The HTML tag <ins> is used to
denote data that is being inserted, by changing the tag to <del> data that was inserted can
be deleted leaving the timeline intact. The data files are parsed using a Python function
before being inserted into the timelines. While the irreducible tests are written as Bourne
Again Shell (BASH) scripts, Python’s HTTP library is much more powerful, therefore
the HTTP operations GET, POST, PUT, and DELETE, are handled by Python functions
that are called by the BASH script. Using a combination of Python functions and BASH
scripts the timelines are created, inserted with data, read, and then deleted.

The base URL and the requested parameters, after the timeline has been created,
are exported to a checking script. If no data is being is inserted, then only the metadata is
checked, else both the metadata and inserted data are checked. These checks consist of
determining if the metadata was created and if it was whether the value is either zero or
non-zero depending on the specified metadata object. As for timelines containing data,
the check makes sure that the data is actually inserted by comparing the system change
number (SCN) and looking for a non-zero number, thus indicating a change. The current
SCN is used to identify the creation time of a timeline; by setting the SCN parameter in
the created timeline URL to “latest” the most current version of that particular timeline is
displayed. To simplify the checking scripts, a series of functions were created and then
called to preform the actual value comparisons. Functions are called from outside the ac-
tual checking script to streamline the debugging process.

After the timeline had been created, data has been inserted, and the metadata and
data have been checked, the timeline can be read to the output. Using a Python function
and the HTTP GET command, the metadata and any data that has been inserted into the



timeline are read. The output of this command, the HTML code that the newly created
timeline URL points to, can then be read in the terminal that the script is run in. This be-
comes a useful feature if timelines are deleted at the end of the script. Once a timeline is
deleted, the URL no longer points to the HTML file containing the metadata and inserted
data. If a read is preformed before a delete, then the HTML can be viewed in the terminal
even if the timeline is deleted or the data itself is deleted.

‘ BASH Functions

Python HTTP ’ (meta)data

Functions | Checking Function

Irreducible

Test

Figure 3: The external scripts and functions accessed by a single irreduci-
ble test.

Functions are also used to check the exit codes of every operation preformed
within a script. By checking for successful exit codes at the end of every operation, errors
are found quickly and at their first occurrence in the script. The line number of the func-
tion is a parameter of the function itself, thus the failure of the function causes the line
number where the error occurred to be sent to the output. This makes finding the source
of an error easy to find. With the optional exit parameter in the exit code functions, the
script can be terminated at the first sign of an error or if a critical operation fails, thus er-
rors are even easier to discover and diagnose. Aside from checking exit codes, the HTTP
return codes are also outputted. This allows for easy viewing of the result of any opera-
tion preformed in the script. For example, if a timeline creation returns a 303 code, then
the create operation was a success, however, if a 400 code is returned, then the create op-
eration was considered a “bad request” and wasn’t created. The variety of HTTP return
codes allows for specific troubleshooting to occur at the server level.

The architecture of the irreducible tests is centered on the detection of any possi-
ble error and the ease of repair of those errors. The irreducible tests are meant to create a
stable baseline for the rest of the software to rely upon; therefore any error present in the
elemental functions must be repaired immediately. Through the use of Python function to
handle the HTTP, BASH functions to check error codes, data and metadata checking
scripts, and HTTP return codes, the irreducible tests are easy to read and make software
errors apparent. By providing as much information about a discovered error (eg line
number, HTTP return code) as possible, errors can be easily found and repaired.

V. Results



The ultimate goal of the irreducible tests is to help optimize the Space Mission
Sequencing Software before its release. By making sure that the most critical features in
the software are at their optimal functionality and that there are no undiscovered errors in
the software, the Space Mission Sequencing Software will become a powerful tool in the
sequencing and verification of spacecraft operations. With the creation of the irreducible
tests, previously unknown errors were revealed and remnants from previous software ver-
sions were uncovered. Thus the irreducible tests succeeded in discovering and reporting
software errors. One goal of the irreducible tests was to test every possible combination
of parameters for any timeline type. By doing this, errors were discovered that only oc-
curred with one specific combination of parameters. Had these irreducible tests not been
in place, these errors could have been overlooked because of the exacting parameters that
were necessary for the errors to arise. The tests were also instrumental in discovering
parts of software that were either obsolete remnants of previous versions or had never
been upgraded. Many times an error that appeared to have a simple issue (e.g. updating a
variable name), revealed much larger issues. Conversely, an extremely complex error
would be caused by something as simple as using the wrong time format for a data type.
Each error that was discovered could then be reported to the software development team
for either removal or repair. The irreducible tests succeeded in discovering previously
unknown errors in the software and facilitating the solutions of the errors.

VI. Discussion

While the irreducible tests can be considered a success in the arena of error find-
ing and reporting, the tests were not able to be used to their full extent. The irreducible
tests were created to be a tool for both debugging and for testing the scalability of the
software. The tests were created and used for debugging, but the scalability was never
implemented. Using a program called JMeter, virtual users can be simulated to run the
irreducible test. Multiple users can be created to simulate virtual machines to stress the
servers under the pressure of simultaneous access. The tests are ready for virtual use and
can used in JMeter any time.

Aside from the virtual stress testing, the irreducible tests preformed their debug-
ging role to their full capabilities. While the tests were not exercised to their full extent,
their use as a debugging tool became apparent. In this area, the tests proved to test the
functionality of the software and provide a stable baseline for the whole.

VII. Conclusion
In this paper, it has been shown that the irreducible tests can be used for fault

finding in the Space Mission Sequencing Software. It has presented that the tests can also
be used to establish a baseline to keep as many errors as possible from the software. The
irreducible tests will continue to be created and updated as the software evolves towards
release. For future implementations, the irreducible tests can be used for simulating virtu-
al users and stress testing the software and server. With the irreducible tests, the software
now has means of establishing a functioning baseline and a way to test scalability before
expanding onto the cloud.

Acknowledgments



I would first like to acknowledge Paul Wolgast, my mentor. All the assistance and
understanding he has given me during my internship has helped me better understand my
work and enjoy my time at JPL.

I would also like to acknowledge Steven Parkin, my co-mentor. He helped me
better understand the programming languages I was using and the general architecture of
the Space Mission Sequencing Software.

This research was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, and was sponsored by the JPL Space Summer High School Internship
Program (SpaceSHIP) and the National Aeronautics and Space Administration.

Reference(s)

SEQ Revitalization. Ed. Paul A. Wolgast. SEQR Development Team, 12 May 2012.
Web. 15 Aug. 2012. <https://jplis-ahs-
003.jpl.nasa.gov/confluence/display/SEQR/SEQ Revitalization>.





