11/13/2012

Proof or Consequences
the Verification of Curiosity’s Software

Gerard J. Holzmann
JPL Laboratory for Reliable Softwgre
Caltech CMS, Senior Faculty Associate

© 2012 California Institute of Technology.
Government Sponsorship Acknowledged.

. Aug.2012
a trip of

350 Million miles

sun

Jnercury

@
Nov.2011

11/13/2012

target: Gale crater

an old streambed

12 x 4.3 mile landing elipse

i

-‘E‘?‘ 4 =
& e e O

surface blast marks from the landing

11/13/2012

how do you make sure that it works?

Flight System Stress Testing

=
@
=]
ic
17}
=]
=
©
=
=
(a]
=
=2
(e
=)
=
(7}
©
o
S
£

Guidance & Entry-Descent & Flight SW only Flight SW + EM HW Flight SW + HW
Navigation (GNC) Landing (EDL)
Algorithms +GNC Software

Increasing Command and Response Fidelity

the flight software...
3 Million lines of code
120 parallel threads (‘tasks’)

5 years development time

how do you get it right?

new risk-based coding standard

with nightly compliance checks
new developer certification program

with exams...

new code review process
based on static source code analysis

formal analysis of critical sub-systems

first challenge: multi-threaded code

what is the number of possible
executions given 3 processes with 3
interleaving points in each?

9! (3 3!

.. -1880
6!.3! 3!1.3! 3!

(placing 3 sets of 3 tokens in 9 slots)

are all these executions okay?
+ in tests, how many are checked?
* how many paths are equivalent?

11/13/2012

second challenge: growing code size

10000
Frew) 50
A
1m0
X 21l
1
-
s - a new meaning for
“exhaustive testing”?
(exhausting the testers,
" kg e PE [1957] BAER [3O0] WRL 1012

not the code)
Pl ‘Bal

residual defects rates are typically expressed as “defects per KLOC”
arate of 0.1 — 1.0 defects per KLOC is considered difficult to achieve

a more formal approach
model checking

the basic idea:

given formal system S and property p
negate p and compute: —.p N S '

for multi-threaded code: b
S is computed from thread behaviors
(using partial order reduction to
eliminate equivalent executions) if (=p x S) is empty: p holds in S
* pis expressed in linear temporal logic
which defines the accepting language

if non-empty: (—p x S) contains
all error sequences in S
compute one such witness and stop

11/13/2012

the relation between LTL and automata

« for any LTL formula f there exists a finite, non-deterministic,
Blchi automaton that accepts exactly (and only) those
executions (w-runs) for which f is satisfied

« example f: &Op corresponds to Blichi automaton:

T p

* the logical negation of f: =G Op We can yse
mU/ti-threa
Parts of

-p
true

: Code
Cunosity's flight

proving correctness of multi-threaded C
programs — what is the state-of-the-art?

* asmall SRt
example

2000: manual proof (a few months)
proof sketch: 5 pages, 7 Lemmas, 5 Theorems

2004: PVS theorem prover (3 months)
2006: +CAL model & TLA+ proof (a few days)
2012: ?

11/13/2012

the DCAS algorithm in C

(from [Detlefs et al 2000]) "

Saddrl
“addr 2

semantics of the DCAS operation

the proposed pushRight() and popRight() code},

a simple tester

a sample reader and writer thread

11/13/2012

verification

wouldn’t it be nice

if we could just do this:
$ verify dcas.c

..report assertion violation

$

1. this takes the C code as input
and uses a model-extractor to generate
a formal model (S); it then runs the Spin model
to check if the assertion (p) can be violated

2. all steps together take 70 seconds

3. the verification step takes a fraction of a second

model extraction

the code: 200 lines

the secret. 10 line

%F dcas.c
%X -e pushRight
%X -e popRight
%X -e initialize
%X -a sample_ reader
%X -a sample_writer
%D
#include "dcas.h"

. . %0 dcas.c

dcas.c contains the test routines

and the explicit heap allocator, a small configuration file
which makes sure all relevant data to guide the modex model extractor
is tracked as part of the system state
the model extractor preserves control-flow
it supports event-level abstractions (not shown)

11/13/2012

11/13/2012

where else can we use this?
model based testing

design peer syntax standard
review review checking testing

design N parse/ \ __, |executable
requirements compile code

design models static logic model runtime
requirements analysis ERENETS checking monitoring

e.g. Ubet, Rcat, semmile e.g. Visual Threads
SPIN etc. CODESOMNAR JavaPathExplorer

Floomverily” TraceContract, etc.

the journey begins...

